Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221610

RESUMEN

Photodynamic therapy (PDT) has emerged as a promising treatment for malignant tumours in recent decades due to its impressive spatiotemporal selectivity, minimal invasiveness, and few adverse effects. Despite these advancements, there remain significant challenges in effectively delivering photosensitizers to tumours and overcoming tumour hypoxia to maximize the therapeutic benefits of PDT. Ongoing research efforts are focused on developing innovative strategies to overcome the above-mentioned challenges, such as nanoplatforms and combination therapy approaches. Hence, reactive oxygen species (ROS)-responsive polymeric micelles are promising candidates to enhance the distribution and retention of photosensitizers within tumours. Additionally, efforts to alleviate tumour hypoxia may further improve the anti-tumour effects of PDT. In this study, we designed ROS-responsive polymeric micelles (TC@PTP) co-loaded with a Tapp-COF, a porphyrin derivative, and capsaicin for PDT of melanoma. These ROS-responsive nanocarriers, constructed from thioketal (TK)-linked amphiphilic di-block copolymers (PEG5K-TK-PLGA5K), could accumulate in the tumor microenvironment and release drugs under the action of ROS. Capsaicin, acting as a biogenic respiratory inhibitor, suppressed mitochondrial respiration and the hypoxia-inducible factor 1 (HIF-1) signaling pathway, thereby increasing oxygen levels at the tumour site. These PDT-triggered ROS-responsive nanoparticles effectively alleviated the tumour hypoxic microenvironment and enhanced anti-tumour efficacy. With superior biocompatibility and tumour-targeting abilities, the platform holds great promise for advancing anti-tumour combination therapy.

2.
Acta Pharm Sin B ; 14(3): 1329-1344, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486993

RESUMEN

Osteosarcoma is usually resistant to immunotherapy and, thus primarily relies on surgical resection and high-dosage chemotherapy. Unfortunately, less invasive or toxic therapies such as photothermal therapy (PTT) and chemodynamic therapy (CDT) generally failed to show satisfactory outcomes. Adequate multimodal therapies with proper safety profiles may provide better solutions for osteosarcoma. Herein, a simple nanocomposite that synergistically combines CDT, PTT, and chemotherapy for osteosarcoma treatment was fabricated. In this composite, small 2D NiFe-LDH flakes were processed into 3D hollow nanospheres via template methods to encapsulate 5-Fluorouracil (5-FU) with high loading capacity. The nanospheres were then adsorbed onto larger 2D Ti3C2 MXene monolayers and finally shielded by bovine serum albumin (BSA) to form 5-FU@NiFe-LDH/Ti3C2/BSA nanoplatforms (5NiTiB). Both in vitro and in vivo data demonstrated that the 5-FU induced chemotherapy, NiFe-LDH driven chemodynamic effects, and MXene-based photothermal killing collectively exhibited a synergistic "all-in-one" anti-tumor effect. 5NiTiB improved tumor suppression rate from <5% by 5-FU alone to ∼80.1%. This nanotherapeutic platform achieved higher therapeutic efficacy with a lower agent dose, thereby minimizing side effects. Moreover, the composite is simple to produce, enabling the fine-tuning of dosages to suit different requirements. Thus, the platform is versatile and efficient, with potential for further development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA