Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 379: 129045, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37044152

RESUMEN

Lignin, a highly heterogeneous polymer of lignocellulosic biomass, is intricately associated with cellulose and hemicellulose, responsible for its strength and rigidity. Lignin decomposition is carried out through certain enzymes derived from microorganisms to promote the hydrolysis of lignin. Analyzing multi-omics data helps to emphasize the probable value of fungal-produced enzymes to degrade the lignocellulosic material, which provides them an advantage in their ecological niches. This review focuses on lignin biodegrading microorganisms and associated ligninolytic enzymes, including lignin peroxidase, manganese peroxidase, versatile peroxidase, laccase, and dye-decolorizing peroxidase. Further, enzymatic catalysis, lignin biodegradation mechanisms, vital factors responsible for lignin modification and degradation, and the design and selection of practical metabolic pathways are also discussed. Highlights were made on metabolic pathway engineering, different aspects of omics analyses, and its scope and applications to ligninase enzymes. Finally, the advantages and essential steps of successfully applying metabolic engineering and its path forward have been addressed.


Asunto(s)
Lignina , Ingeniería Metabólica , Lignina/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Lacasa/genética , Lacasa/metabolismo , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA