Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Immunol Res ; 2024: 9313267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939745

RESUMEN

Vaccination is one of the most effective prophylactic public health interventions for the prevention of infectious diseases such as coronavirus disease (COVID-19). Considering the ongoing need for new COVID-19 vaccines, it is crucial to modify our approach and incorporate more conserved regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to effectively address emerging viral variants. The nucleocapsid protein is a structural protein of SARS-CoV-2 that is involved in replication and immune responses. Furthermore, this protein offers significant advantages owing to the minimal accumulation of mutations over time and the inclusion of key T-cell epitopes critical for SARS-CoV-2 immunity. A novel strategy that may be suitable for the new generation of vaccines against COVID-19 is to use a combination of antigens, including the spike and nucleocapsid proteins, to elicit robust humoral and potent cellular immune responses, along with long-lasting immunity. The strategic use of multiple antigens aims to enhance vaccine efficacy and broaden protection against viruses, including their variants. The immune response against the nucleocapsid protein from other coronavirus is long-lasting, and it can persist up to 11 years post-infection. Thus, the incorporation of nucleocapsids (N) into vaccine design adds an important dimension to vaccination efforts and holds promise for bolstering the ability to combat COVID-19 effectively. In this review, we summarize the preclinical studies that evaluated the use of the nucleocapsid protein as antigen. This study discusses the use of nucleocapsid alone and its combination with spike protein or other proteins of SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/genética , Inmunogenicidad Vacunal , Animales , Fosfoproteínas/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Epítopos de Linfocito T/inmunología , Anticuerpos Antivirales/inmunología , Proteínas de la Nucleocápside/inmunología
3.
Front Immunol ; 11: 352, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210961

RESUMEN

Dengue is the most prevalent and rapidly transmitted mosquito-borne viral disease of humans. One of the fundamental innate immune responses to viral infections includes the processing and release of pro-inflammatory cytokines such as interleukin (IL-1ß and IL-18) through the activation of inflammasome. Dengue virus stimulates the Nod-like receptor (NLRP3-specific inflammasome), however, the specific mechanism(s) by which dengue virus activates the NLRP3 inflammasome is unknown. In this study, we investigated the activation of the NLRP3 inflammasome in endothelial cells (HMEC-1) following dengue virus infection. Our results showed that dengue infection as well as the NS2A and NS2B protein expression increase the NLRP3 inflammasome activation, and further apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) oligomerization, and IL-1ß secretion through caspase-1 activation. Specifically, we have demonstrated that NS2A and NS2B, two proteins of dengue virus that behave as putative viroporins, were sufficient to stimulate the NLRP3 inflammasome complex in lipopolysaccharide (LPS)-primed endothelial cells. In summary, our observations provide insight into the dengue-induced inflammatory response mechanism and highlight the importance of DENV-2 NS2A and NS2B proteins in activation of the NLRP3 inflammasome during dengue virus infection.


Asunto(s)
Virus del Dengue/inmunología , Dengue/inmunología , Células Endoteliales/fisiología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Línea Celular Transformada , Dengue/virología , Virus del Dengue/patogenicidad , Humanos , Inmunidad Innata , Interleucina-1beta/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas Viroporinas/genética , Virulencia
4.
Immunol Res ; 64(5-6): 1101-1117, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27699580

RESUMEN

A complex interplay between pathogen and host determines the immune response during viral infection. A set of cytosolic sensors are expressed by immune cells to detect viral infection. NOD-like receptors (NLRs) comprise a large family of intracellular pattern recognition receptors. Members of the NLR family assemble into large multiprotein complexes, termed inflammasomes, which induce downstream immune responses to specific pathogens, environmental stimuli, and host cell damage. Inflammasomes are composed of cytoplasmic sensor molecules such as NLRP3 or absent in melanoma 2 (AIM2), the adaptor protein ASC (apoptosis-associated speck-like protein containing caspase recruitment domain), and the effector protein procaspase-1. The inflammasome operates as a platform for caspase-1 activation, resulting in caspase-1-dependent proteolytic maturation and secretion of interleukin (IL)-1ß and IL-18. This, in turn, activates the expression of other immune genes and facilitates lymphocyte recruitment to the site of primary infection, thereby controlling invading pathogens. Moreover, inflammasomes counter viral replication and remove infected immune cells through an inflammatory cell death, program termed as pyroptosis. As a countermeasure, viral pathogens have evolved virulence factors to antagonise inflammasome pathways. In this review, we discuss the role of inflammasomes in sensing viral infection as well as the evasion strategies that viruses have developed to evade inflammasome-dependent immune responses. This information summarises our understanding of host defence mechanisms against viruses and highlights research areas that can provide new approaches to interfere in the pathogenesis of viral diseases.


Asunto(s)
Caspasa 1/metabolismo , Inflamasomas/inmunología , Inflamación/inmunología , Piroptosis , Virosis/inmunología , Animales , Humanos , Evasión Inmune , Inflamación/virología , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Factores de Virulencia/inmunología , Replicación Viral/inmunología
5.
Virol J ; 13: 1, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26728778

RESUMEN

BACKGROUND: One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investigated whether the small hydrophobic DENV protein NS2B serves a viroporin function. METHODS: We cloned the DENV NS2B sequence and expressed it in a bacterial expression system. Subsequently, we evaluated the effect of DENV NS2B on membranes when NS2B was overexpressed, measured bacterial growth restriction, and evaluated changes of permeability to hygromycin. The NS2B protein was purified by affinity chromatography, and crosslinking assays were performed to determine the presence of oligomers. Hemolysis assays and transmission electron microscopy were performed to identify structures involved in permeability changes. RESULTS: The DENV-2 NS2B protein showed similitude with the JEV viroporin. The DENV-2 NS2B protein possessed the ability to change the membrane permeability in bacteria, to restrict bacterial cell growth, and to enable membrane permeability to hygromycin B. The NS2B protein formed trimers that could participate in cell lysis and generate organized structures on eukaryotes membranes. CONCLUSIONS: Our data suggest that the DENV-2 NS2B viral protein is capable of oligomerizing and organizing to form pore-like structures in different lipid environments, thereby modifying the permeability of cell membranes.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Virus del Dengue/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Proteínas no Estructurales Virales/farmacología , Secuencia de Aminoácidos , Virus del Dengue/genética , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Alineación de Secuencia , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA