Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(14): e34276, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108901

RESUMEN

Nitrogen (N) deficiency limits crop productivity. In this study, rhizoengineering with biofilm producing rhizobacteria (BPR) contributing to productivity, physiology, and bioactive contents in tomato was examined under N-deficient field conditions. Here, different BPR including Leclercia adecarboxylata ESK12, Enterobacter ludwigii ESK17, Glutamicibacter arilaitensis ESM4, E. cloacae ESM12, Bacillus subtilis ESM14, Pseudomonas putida ESM17 and Exiguobacterium acetylicum ESM24 were used for the rhizoengineering of tomato plants. Rhizoengineered plants showed significant increase in growth attributes (15.73%-150.13 %) compared to the control plants. However, production of hydrogen peroxide (21.49-59.38 %), electrolyte leakage (19.5-38.07 %) and malondialdehyde accumulation (36.27-46.31 %) were increased remarkably more in the control plants than the rhizoengineered plants, thus N deficiency induced the oxidative stress. Compared to the control, photosynthetic rate, leaf temperature, stomatal conductance, intrinsic and instantaneous water use efficiency, relative water content, proline and catalase activity were incredibly enhanced in the rhizoengineered plants, suggesting both non-enzymatic and enzymatic antioxidant systems might protect tomato plants from oxidative stress under N-deficient field conditions. Yield (10.24-66.21 %), lycopene (4.8-7.94 times), flavonoids (52.32-110.46 %), phenolics (9.79-23.5 %), antioxidant activity (34.09-86.36 %) and certain minerals were significantly increased in the tomatoes from rhizoengineered plants. The principal component analysis (PCA) revealed that tomato plants treated with BPR induced distinct profiles compared to the control. Among all the applied BPR strains, ESM4 and ESM14 performed better in terms of biomass production, while ESK12 and ESK17 showed better results for reducing oxidative stress and increasing bioactive compounds in tomato, respectively. Thus, rhizoengineering with BPR can be utilized to mitigate the oxidative damage and increase the productivity and bioactive compounds in tomato under N-deficient field conditions.

2.
Chemosphere ; 360: 142418, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795913

RESUMEN

Microbial-assisted rhizoengineering is a promising biotechnology for improving crop productivity. In this study, lettuce roots were bacterized with two lead (Pb) tolerant rhizobacteria including Pseudomonas azotoformans ESR4 and P. poae ESR6, and a consortium consisted of ESR4 and ESR6 to increase productivity, physiology and antioxidants, and reduce Pb accumulation grown in Pb-contaminated soil i.e., 80 (Pb in native soil), 400 and 800 mg kg-1 Pb. In vitro studies showed that these strains and the consortium produced biofilms, synthesized indole-3-acetic acid and NH3, and solubilized phosphate challenging to 0, 100, 200 and 400 mg L-1 of Pb. In static conditions and 400 mg L-1 Pb, ESR4, ESR6 and the consortium adsorbed 317.0, 339.5 and 357.4 mg L-1 Pb, respectively, while 384.7, 380.7 and 373.2 mg L-1 Pb, respectively, in shaking conditions. Fourier transform infrared spectroscopy results revealed that several functional groups [Pb-S, M - O, O-M-O (M = metal ions), S-S, PO, CO, -NH, -NH2, C-C-O, and C-H] were involved in Pb adsorption. ESR4, ESR6 and the consortium-assisted rhizoengineering (i) increased leaf numbers and biomass production, (ii) reduced H2O2 production, malondialdehyde, electrolyte leakages, and transpiration rate, (iii) augmented photosynthetic pigments, photosynthetic rate, water use efficiency, total antioxidant capacity, total flavonoid content, total phenolic content, and minerals like Ca2+ and Mg2+ in comparison to non-rhizoengineering plants grown in Pb-contaminated soil. Principal component analysis revealed that higher pigment production and photosynthetic rate, improved water use efficiency and increased uptake of Ca2+ were interlinked to increased productivity by bacterial rhizoengineering of lettuce grown in different levels of Pb exposures. Surprisingly, Pb accumulation in lettuce roots and shoots was remarkably decreased by rhizoengineering than in non-rhizoengineering. Thus, these bacterial strains and this consortium could be utilized to improve productivity and reduce Pb accumulation in lettuce.


Asunto(s)
Lactuca , Plomo , Raíces de Plantas , Contaminantes del Suelo , Lactuca/crecimiento & desarrollo , Lactuca/metabolismo , Plomo/metabolismo , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Microbiología del Suelo , Biodegradación Ambiental , Suelo/química , Pseudomonas/metabolismo , Pseudomonas/fisiología , Antioxidantes/metabolismo
3.
J Oleo Sci ; 73(4): 467-477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556281

RESUMEN

Rice bran (RB) and rice bran oil (RBO) are exploring as prominent food component worldwide and their compositional variation is being varied among the world due to regional and production process. In this study, Fermented Rice Bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus and Bifidobacterium bifidum) at 125×10 5 spore g -1 of rice bran, and investigated to evaluate nutritional quality. The Crude Rice Bran Oil (CRBO) was extracted from RB and its quality was also investigated compared to market available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (Threonine, valine, leucine, lysine, histidine and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, serine and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00 mg/g) were found in CRBO compared to MRBO (ranging 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% were found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%) respectively. The physiochemical parameters (density, refractive index, iodine value) were found satisfactory in all sample except acid value and peroxide value higher in CRBO. Heavy metal concentration was found within an acceptable range in both CRBO and MRBO. Thus FRB and RBO could be value added food supplement for human health.


Asunto(s)
Antioxidantes , Ácidos Grasos Insaturados , Humanos , Aceite de Salvado de Arroz/química , Ácidos Grasos Insaturados/análisis , Antioxidantes/análisis , Vitamina E , Fenoles
4.
Foods ; 12(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37959116

RESUMEN

Rice (Oryza sativa L.) is the principal staple food, a fundamental component of food security, a significant source of energy and major nutrients, and a key player in the overall nutritional status in Bangladesh. Parboiling is a common rice-processing treatment in Bangladesh. Recently, polishing has also become a common practice among millers seeking to attract consumers. Polishing may influence the nutrient composition of rice. The present study aimed to investigate the impact of parboiling and polishing on the nutritional content of the five High Yield Varieties (HYVs) of rice (BR11, BRRI dhan28, BRRI dhan29, BRRI dhan49, and BRRI dhan84) and their percent contributions to the Recommended Dietary Allowances (RDA) of vitamins and minerals. All of the rice samples were analyzed for proximate parameters, vitamins (B1, B2, B3, B6, and folate), and minerals (Ca, Mg, Fe, Zn, Na, K, P). Moisture, ash, fat, and total dietary fiber (TDF) were determined gravimetrically, according to the AOAC Official Methods; protein was measured by the Kjeldahl method; B-group vitamins were measured using Ultra Pressure Liquid Chromatography; and mineral content was determined by ICP-OES. The energy, protein, fat, and total dietary fiber (TDF) content of the samples ranged between 342-357 kcal/100 g, 6.79-10.74 g/100 g, 0.31-1.69 g/100 g, and 2.59-3.92 g/100 g respectively. Thiamin, riboflavin, niacin, pyridoxin, and folate content ranged from 0.11-0.25 mg/100 g, 0.01-0.05 mg/100 g, 2.82-6.42 mg/100 g, 0.12-0.30 g/100 g, and 5.40-23.95 g/100 g respectively. In a comparison of parboiling and polishing, macronutrients and vitamin retention were higher in parboiled unpolished rice than in polished unparboiled rice. The minerals (mg/100 g) Ca, Mg, Fe, Zn, Na, K, and P were in the ranges 32.82-44.72, 30.69-58.34, 0.51-0.70,1.83-2.79, 5.00-5.36, 106.49-112.73, and 162.23-298.03. Minerals of BRRI dhan84 were unaffected by polishing and parboiling. BRRI dhan84 contributed a higher percentage of RDA of all B vitamins and minerals. Therefore, to reduce nutrient loss in rice, industries and consumers should be encouraged to avoid polishing or limit polishing to 10% DOM and to consume unpolished rice, either parboiled or unparboiled.

5.
Sci Rep ; 12(1): 5599, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379908

RESUMEN

Biofilm-producing rhizobacteria (BPR) enhance productivity and mitigate abiotic stresses in plants. This study showed that 21 out of 65 halotolerant rhizobacteria could build biofilms. The components of the biofilm matrices i.e., extracellular polymeric substances (EPS) are proteins, curli, nanocelloluse, nucleic acids, lipids, and peptidoglycans. Various functional groups including carbonyl, carboxyl, amino, hydroxyl, and phosphate were identified. Positions of these groups were shifted by application of 5% NaCl, suggesting Na+ biosorption. By sequencing, Glutamicibacter arilaitensis (ESK1, ESM4 and ESM7), G. nicotianae (ESK19, ESM8 and ESM16), Enterobacter ludwigii (ESK15, ESK17, ESM2 and ESM17), E. cloacae (ESM5 and ESM12), Exiguobacterium acetylicum (ESM24 and ESM25), Staphylococcus saprophyticus ESK6, Leclercia adecarboxylata ESK12, Pseudomonas poae ESK16, Bacillus subtilis ESM14, and P. putida ESM17 were identified. These rhizobacteria exhibited numerous plant growth-promoting (PGP) activities including producing IAA, ACC deaminase, and siderophores, and solubilizing phosphate. Under non-stress, bacterized plants increased biomass accumulation (8-23.2% roots and 23-49.4% shoots), while under seawater-induced salt stress only ESK12, ESM4, ESM12, and ESM14 enhanced biomass production (5.8-52.9% roots and 8.8-33.4% shoots). Bacterized plants induced antioxidant defense system (19.5-142% catalase and 12.3-24.2% DPPH radical scavenging activity), retained a greater relative water content (17-124%), showed lesser membrane injuries (19.9-26.5%), and a reduced Na+ (6-24% in roots) and increased K+/Na+ ratio (78.8 and 103% in roots by ESK12 and ESM24, respectively) than the non-bacterized plants in saline conditions. Thus, native halotolerant BPR can be utilized as ameliorators of salt stress.


Asunto(s)
Alphaproteobacteria , Solanum lycopersicum , Biopelículas , Solanum lycopersicum/microbiología , Estrés Salino , Agua de Mar
6.
Saudi J Biol Sci ; 28(12): 7472-7480, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34867052

RESUMEN

BACKGROUND: Black pericarp rice has recently become popular among rice consumers for its diverse health benefits specially anti-cancer effect. Cyanidin-3-Glucosides (C3G), an prominant bioactive component of anthocyanins which is abundantly present in black pericarp rice. OBJECTIVES: We investigated, how effectively it can be used to fortify Cyanidin-3-Glucosides (C3G) content in red and white pericarp polished rice or rice based bakery products for more nutritional value. METHOD: In the present study, we have characterized several black pericarp rice cultivars along with some red pericarp and white pericarp rice cultivars by physicochemical including mineral profiling, and quantified the C3G by UFLC and LCMS. RESULTS: C3G content was significantly reduced from raw rice to cooked rice condition. All the black pericarp rice cultivars synthesized C3G, while this content was not detected in red and white pericarp rice cultivars. However, when 25% of black pericarp rice were mixed with 75% red or white pericarp polished rice, C3G content was significantly retained in cooked rice conditions. Formulation of rice-based bakery food product using black pericarp rice powder was also remarkably retained the C3G content as compared to that of cooking. Black rice is harder in texture, difficult to digest and needs higher energy for cooking. Therefore, we tried to circumvent these challenges by fortifying 25% of black pericarp rice with white or red pericarp rice. CONCLUSION: Fortification of C3G enriched black rice (25%) with red or white pericarp rice (75%) might bring a better nutritional quality in both cooking and baking condition. This may lead a way to the effective management of the non-communicable disease such as cancer for common rice consuming population.

7.
Front Microbiol ; 11: 542053, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324354

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth but also control phytopathogens and mitigate abiotic stresses, including water-deficit stress. In this study, 21 (26.9%) rhizobacterial strains isolated from drought-prone ecosystems of Bangladesh were able to form air-liquid (AL) biofilms in the glass test tubes containing salt-optimized broth plus glycerol (SOBG) medium. Based on 16S rRNA gene sequencing, Pseudomonas chlororaphis (ESR3 and ESR15), P. azotoformans ESR4, P. poae ESR6, P. fluorescens (ESR7 and ESR25), P. gessardii ESR9, P. cedrina (ESR12, ESR16, and ESR23), P. veronii (ESR13 and ESR21), P. parafulva ESB18, Stenotrophomonas maltophilia ESR20, Bacillus cereus (ESD3, ESD21, and ESB22), B. horikoshii ESD16, B. aryabhattai ESB6, B. megaterium ESB9, and Staphylococcus saprophyticus ESD8 were identified. Fourier transform infrared spectroscopy studies showed that the biofilm matrices contain proteins, polysaccharides, nucleic acids, and lipids. Congo red binding results indicated that these bacteria produced curli fimbriae and nanocellulose-rich polysaccharides. Expression of nanocellulose was also confirmed by Calcofluor binding assays and scanning electron microscopy. In vitro studies revealed that all these rhizobacterial strains expressed multiple plant growth-promoting traits including N2 fixation, production of indole-3-acetic acid, solubilization of nutrients (P, K, and Zn), and production of ammonia, siderophores, ACC deaminase, catalases, lipases, cellulases, and proteases. Several bacteria were also tolerant to multifarious stresses such as drought, high temperature, extreme pH, and salinity. Among these rhizobacteria, P. cedrina ESR12, P. chlororaphis ESR15, and B. cereus ESD3 impeded the growth of Xanthomonas campestris pv. campestris ATCC 33913, while P. chlororaphis ESR15 and B. cereus ESD21 prevented the progression of Ralstonia solanacearum ATCC® 11696TM. In a pot experiment, tomato plants inoculated with P. azotoformans ESR4, P. poae ESR6, P. gessardii ESR9, P. cedrina ESR12, P. chlororaphis ESR15, S. maltophilia ESR20, P. veronii ESR21, and B. aryabhattai ESB6 exhibited an increased plant growth compared to the non-inoculated plants under water deficit-stressed conditions. Accordingly, the bacterial-treated plants showed a higher antioxidant defense system and a fewer tissue damages than non-inoculated plants under water-limiting conditions. Therefore, biofilm-producing PGPR can be utilized as plant growth promoters, suppressors of plant pathogens, and alleviators of water-deficit stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA