Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Eng Phys ; 121: 104012, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37985018

RESUMEN

Endoprosthetic reconstruction of the pelvic bone using 3D-printed, custom-made implants has delivered early load-bearing ability and good functional outcomes in the short term to individuals with pelvic sarcoma. However, excessive stress-shielding and subsequent resorption of peri­prosthetic bone can imperil the long-term stability of such implants. To evaluate the stress-shielding performance of pelvic prostheses, we developed a sequential modeling scheme using subject-specific finite element models of the pelvic bone-implant complex and personalized neuromusculoskeletal models for pre- and post-surgery walking. A new topology optimization approach is introduced for the stress-shielding resistant (SSR) design of custom pelvic prostheses, which uses 3D-printable porous lattice structures. The SSR optimization was applied to a typical pelvic prosthesis to reconstruct a type II+III bone resection. The stress-shielding performance of the optimized implant based on the SSR approach was compared against the conventional optimization. The volume of the peri­prosthetic bone predicted to undergo resorption post-surgery decreased from 44 to 18%. This improvement in stress-shielding resistance was achieved without compromising the structural integrity of the prosthesis. The SSR design approach has the potential to improve the long-term stability of custom-made pelvic prostheses.


Asunto(s)
Miembros Artificiales , Huesos Pélvicos , Humanos , Diseño de Prótesis , Prótesis e Implantes , Huesos Pélvicos/cirugía , Pelvis , Análisis de Elementos Finitos
2.
Artículo en Inglés | MEDLINE | ID: mdl-37831559

RESUMEN

Muscle forces and joint moments estimated by electromyography (EMG)-driven musculoskeletal models are sensitive to the wrapping surface geometry defining muscle-tendon lengths and moment arms. Despite this sensitivity, wrapping surface properties are typically not personalized to subject movement data. This study developed a novel method for personalizing OpenSim cylindrical wrapping surfaces during EMG-driven model calibration. To avoid the high computational cost of repeated OpenSim muscle analyses, the method uses two-level polynomial surrogate models. Outer-level models specify time-varying muscle-tendon lengths and moment arms as functions of joint angles, while inner-level models specify time-invariant outer-level polynomial coefficients as functions of wrapping surface parameters. To evaluate the method, we used walking data collected from two individuals post-stroke and performed four variations of EMG-driven lower extremity model calibration: 1) no calibration of scaled generic wrapping surfaces (NGA), 2) calibration of outer-level polynomial coefficients for all muscles (SGA), 3) calibration of outer-level polynomial coefficients only for muscles with wrapping surfaces (LSGA), and 4) calibration of cylindrical wrapping surface parameters for muscles with wrapping surfaces (PGA). On average compared to NGA, SGA reduced lower extremity joint moment matching errors by 31%, LSGA by 24%, and PGA by 12%, with the largest reductions occurring at the hip. Furthermore, PGA reduced peak hip joint contact force by 47% bodyweight, which was the most consistent with published in vivo measurements. The proposed method for EMG-driven model calibration with wrapping surface personalization produces physically realistic OpenSim models that reduce joint moment matching errors while improving prediction of hip joint contact force.


Asunto(s)
Modelos Biológicos , Músculo Esquelético , Humanos , Electromiografía/métodos , Músculo Esquelético/fisiología , Calibración , Articulación de la Cadera/fisiología , Fenómenos Biomecánicos
3.
Front Bioeng Biotechnol ; 10: 964359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582837

RESUMEN

One of the surgical treatments for pelvic sarcoma is the restoration of hip function with a custom pelvic prosthesis after cancerous tumor removal. The orthopedic oncologist and orthopedic implant company must make numerous often subjective decisions regarding the design of the pelvic surgery and custom pelvic prosthesis. Using personalized musculoskeletal computer models to predict post-surgery walking function and custom pelvic prosthesis loading is an emerging method for making surgical and custom prosthesis design decisions in a more objective manner. Such predictions would necessitate the estimation of forces generated by muscles spanning the lower trunk and all joints of the lower extremities. However, estimating trunk and leg muscle forces simultaneously during walking based on electromyography (EMG) data remains challenging due to the limited number of EMG channels typically used for measurement of leg muscle activity. This study developed a computational method for estimating unmeasured trunk muscle activations during walking using lower extremity muscle synergies. To facilitate the calibration of an EMG-driven model and the estimation of leg muscle activations, EMG data were collected from each leg. Using non-negative matrix factorization, muscle synergies were extracted from activations of leg muscles. On the basis of previous studies, it was hypothesized that the time-varying synergy activations were shared between the trunk and leg muscles. The synergy weights required to reconstruct the trunk muscle activations were determined through optimization. The accuracy of the synergy-based method was dependent on the number of synergies and optimization formulation. With seven synergies and an increased level of activation minimization, the estimated activations of the erector spinae were strongly correlated with their measured activity. This study created a custom full-body model by combining two existing musculoskeletal models. The model was further modified and heavily personalized to represent various aspects of the pelvic sarcoma patient, all of which contributed to the estimation of trunk muscle activations. This proposed method can facilitate the prediction of post-surgery walking function and pelvic prosthesis loading, as well as provide objective evaluations for surgical and prosthesis design decisions.

4.
Front Bioeng Biotechnol ; 10: 855870, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246391

RESUMEN

An emerging option for internal hemipelvectomy surgery is custom prosthesis reconstruction. This option typically recapitulates the resected pelvic bony anatomy with the goal of maximizing post-surgery walking function while minimizing recovery time. However, the current custom prosthesis design process does not account for the patient's post-surgery prosthesis and bone loading patterns, nor can it predict how different surgical or rehabilitation decisions (e.g., retention or removal of the psoas muscle, strengthening the psoas) will affect prosthesis durability and post-surgery walking function. These factors may contribute to the high observed failure rate for custom pelvic prostheses, discouraging orthopedic oncologists from pursuing this valuable treatment option. One possibility for addressing this problem is to simulate the complex interaction between surgical and rehabilitation decisions, post-surgery walking function, and custom pelvic prosthesis design using patient-specific neuromusculoskeletal models. As a first step toward developing this capability, this study used a personalized neuromusculoskeletal model and direct collocation optimal control to predict the impact of ipsilateral psoas muscle strength on walking function following internal hemipelvectomy with custom prosthesis reconstruction. The influence of the psoas muscle was targeted since retention of this important muscle can be surgically demanding for certain tumors, requiring additional time in the operating room. The post-surgery walking predictions emulated the most common surgical scenario encountered at MD Anderson Cancer Center in Houston. Simulated post-surgery psoas strengths included 0% (removed), 50% (weakened), 100% (maintained), and 150% (strengthened) of the pre-surgery value. However, only the 100% and 150% cases successfully converged to a complete gait cycle. When post-surgery psoas strength was maintained, clinical gait features were predicted, including increased stance width, decreased stride length, and increased lumbar bending towards the operated side. Furthermore, when post-surgery psoas strength was increased, stance width and stride length returned to pre-surgery values. These results suggest that retention and strengthening of the psoas muscle on the operated side may be important for maximizing post-surgery walking function. If future studies can validate this computational approach using post-surgery experimental walking data, the approach may eventually influence surgical, rehabilitation, and custom prosthesis design decisions to meet the unique clinical needs of pelvic sarcoma patients.

5.
Front Bioeng Biotechnol ; 10: 962959, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159690

RESUMEN

Subject-specific electromyography (EMG)-driven musculoskeletal models that predict muscle forces have the potential to enhance our knowledge of internal biomechanics and neural control of normal and pathological movements. However, technical gaps in experimental EMG measurement, such as inaccessibility of deep muscles using surface electrodes or an insufficient number of EMG channels, can cause difficulties in collecting EMG data from muscles that contribute substantially to joint moments, thereby hindering the ability of EMG-driven models to predict muscle forces and joint moments reliably. This study presents a novel computational approach to address the problem of a small number of missing EMG signals during EMG-driven model calibration. The approach (henceforth called "synergy extrapolation" or SynX) linearly combines time-varying synergy excitations extracted from measured muscle excitations to estimate 1) unmeasured muscle excitations and 2) residual muscle excitations added to measured muscle excitations. Time-invariant synergy vector weights defining the contribution of each measured synergy excitation to all unmeasured and residual muscle excitations were calibrated simultaneously with EMG-driven model parameters through a multi-objective optimization. The cost function was formulated as a trade-off between minimizing joint moment tracking errors and minimizing unmeasured and residual muscle activation magnitudes. We developed and evaluated the approach by treating a measured fine wire EMG signal (iliopsoas) as though it were "unmeasured" for walking datasets collected from two individuals post-stroke-one high functioning and one low functioning. How well unmeasured muscle excitations and activations could be predicted with SynX was assessed quantitatively for different combinations of SynX methodological choices, including the number of synergies and categories of variability in unmeasured and residual synergy vector weights across trials. The two best methodological combinations were identified, one for analyzing experimental walking trials used for calibration and another for analyzing experimental walking trials not used for calibration or for predicting new walking motions computationally. Both methodological combinations consistently provided reliable and efficient estimates of unmeasured muscle excitations and activations, muscle forces, and joint moments across both subjects. This approach broadens the possibilities for EMG-driven calibration of muscle-tendon properties in personalized neuromusculoskeletal models and may eventually contribute to the design of personalized treatments for mobility impairments.

6.
Med Eng Phys ; 95: 39-44, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34479691

RESUMEN

RESEARCH QUESTION: Would there be differences in muscle activation between healthy subjects' (HS) dominant leg and transfemoral amputees' (TFA) intact-leg/contralateral-limb (IL) during normal transient-state walking speed? METHODS: The muscle activation patterns are obtained by calculating the linear envelope of the EMG signals for each group. The activation patterns/temporal changes are compared between-population using statistical parametric mapping (SPM). RESULTS: Individual muscle activity showed significant differences in all muscles except vastus lateralis (VL), semitendinosus (SEM) and tensor fascia latae (TFL) activities. SIGNIFICANCE: The information could be used by the therapists to prevent secondary physical conditions and prosthetic companies to improve the mobility of the amputees.


Asunto(s)
Amputados , Miembros Artificiales , Fenómenos Biomecánicos , Marcha , Humanos , Pierna , Caminata , Velocidad al Caminar
7.
J Electromyogr Kinesiol ; 56: 102506, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33271472

RESUMEN

OBJECTIVE: Externally applied abduction and rotational loads are major contributors to the knee joint injury mechanism; yet, how muscles work together to stabilize the knee against these loads remains unclear. Our study sought to evaluate lower limb functional muscle synergies in healthy young adults such that muscle activation can be directly related to internal knee joint moments. METHODS: Concatenated non-negative matrix factorization extracted muscle and moment synergies of 22 participants from electromyographic signals and joint moments elicited during a weight-bearing force matching protocol. RESULTS: Two synergy sets were extracted: Set 1 included four synergies, each corresponding to a general anterior, posterior, medial, or lateral force direction. Frontal and transverse moments were coupled during medial and lateral force directions. Set 2 included six synergies, each corresponding to a moment type (extension/flexion, ab/adduction, internal/external rotation). Hamstrings and quadriceps dominated synergies associated with respective flexion and extension moments while quadriceps-hamstring co-activation was associated with knee abduction. Rotation moments were associated with notable contributions from hamstrings, quadriceps, gastrocnemius, and hip ab/adductors, corresponding to a general co-activation muscle synergy. CONCLUSION: Our results highlight the importance of muscular co-activation of all muscles crossing the knee to support it during injury-inducing loading conditions such as externally applied knee abduction and rotation. Functional muscle synergies can provide new insight into the relationship between neuromuscular control and knee joint stability by directly associating biomechanical variables to muscle activation.


Asunto(s)
Electromiografía/métodos , Articulación de la Rodilla/fisiología , Músculo Esquelético/fisiología , Soporte de Peso/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Estudios Transversales , Femenino , Músculos Isquiosurales/fisiología , Humanos , Extremidad Inferior/fisiología , Masculino , Músculo Cuádriceps/fisiología , Rango del Movimiento Articular/fisiología , Adulto Joven
8.
Front Comput Neurosci ; 14: 588943, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343322

RESUMEN

Electromyography (EMG)-driven musculoskeletal modeling relies on high-quality measurements of muscle electrical activity to estimate muscle forces. However, a critical challenge for practical deployment of this approach is missing EMG data from muscles that contribute substantially to joint moments. This situation may arise due to either the inability to measure deep muscles with surface electrodes or the lack of a sufficient number of EMG channels. Muscle synergy analysis (MSA) is a dimensionality reduction approach that decomposes a large number of muscle excitations into a small number of time-varying synergy excitations along with time-invariant synergy weights that define the contribution of each synergy excitation to all muscle excitations. This study evaluates how well missing muscle excitations can be predicted using synergy excitations extracted from muscles with available EMG data (henceforth called "synergy extrapolation" or SynX). The method was evaluated using a gait data set collected from a stroke survivor walking on an instrumented treadmill at self-selected and fastest-comfortable speeds. The evaluation process started with full calibration of a lower-body EMG-driven model using 16 measured EMG channels (collected using surface and fine wire electrodes) per leg. One fine wire EMG channel (either iliopsoas or adductor longus) was then treated as unmeasured. The synergy weights associated with the unmeasured muscle excitation were predicted by solving a nonlinear optimization problem where the errors between inverse dynamics and EMG-driven joint moments were minimized. The prediction process was performed for different synergy analysis algorithms (principal component analysis and non-negative matrix factorization), EMG normalization methods, and numbers of synergies. SynX performance was most influenced by the choice of synergy analysis algorithm and number of synergies. Principal component analysis with five or six synergies consistently predicted unmeasured muscle excitations the most accurately and with the greatest robustness to EMG normalization method. Furthermore, the associated joint moment matching accuracy was comparable to that produced by initial EMG-driven model calibration using all 16 EMG channels per leg. SynX may facilitate the assessment of human neuromuscular control and biomechanics when important EMG signals are missing.

9.
Front Bioeng Biotechnol ; 8: 588925, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324623

RESUMEN

Assessment of metabolic cost as a metric for human performance has expanded across various fields within the scientific, clinical, and engineering communities. As an alternative to measuring metabolic cost experimentally, musculoskeletal models incorporating metabolic cost models have been developed. However, to utilize these models for practical applications, the accuracy of their metabolic cost predictions requires improvement. Previous studies have reported the benefits of using personalized musculoskeletal models for various applications, yet no study has evaluated how model personalization affects metabolic cost estimation. This study investigated the effect of musculoskeletal model personalization on estimates of metabolic cost of transport (CoT) during post-stroke walking using three commonly used metabolic cost models. We analyzed walking data previously collected from two male stroke survivors with right-sided hemiparesis. The three metabolic cost models were implemented within three musculoskeletal modeling approaches involving different levels of personalization. The first approach used a scaled generic OpenSim model and found muscle activations via static optimization (SOGen). The second approach used a personalized electromyographic (EMG)-driven musculoskeletal model with personalized functional axes but found muscle activations via static optimization (SOCal). The third approach used the same personalized EMG-driven model but calculated muscle activations directly from EMG data (EMGCal). For each approach, the muscle activation estimates were used to calculate each subject's CoT at different gait speeds using three metabolic cost models (Umberger et al., 2003; Bhargava et al., 2004; Umberger, 2010). The calculated CoT values were compared with published CoT data as a function of walking speed, step length asymmetry, stance time asymmetry, double support time asymmetry, and severity of motor impairment (i.e., Fugl-Meyer score). Overall, only SOCal and EMGCal with the Bhargava metabolic cost model were able to reproduce accurately published experimental trends between CoT and various clinical measures of walking asymmetry post-stroke. Tuning of the parameters in the different metabolic cost models could potentially resolve the observed CoT magnitude differences between model predictions and experimental measurements. Realistic CoT predictions may allow researchers to predict human performance, surgical outcomes, and rehabilitation outcomes reliably using computational simulations.

11.
Front Comput Neurosci ; 14: 54, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754024

RESUMEN

Determination of muscle forces during motion can help to understand motor control, assess pathological movement, diagnose neuromuscular disorders, or estimate joint loads. Difficulty of in vivo measurement made computational analysis become a common alternative in which, as several muscles serve each degree of freedom, the muscle redundancy problem must be solved. Unlike static optimization (SO), synergy optimization (SynO) couples muscle activations across all time frames, thereby altering estimated muscle co-contraction. This study explores whether the use of a muscle synergy structure within an SO framework improves prediction of muscle activations during walking. A motion/force/electromyography (EMG) gait analysis was performed on five healthy subjects. A musculoskeletal model of the right leg actuated by 43 Hill-type muscles was scaled to each subject and used to calculate joint moments, muscle-tendon kinematics, and moment arms. Muscle activations were then estimated using SynO with two to six synergies and traditional SO, and these estimates were compared with EMG measurements. Synergy optimization neither improved SO prediction of experimental activation patterns nor provided SO exact matching of joint moments. Finally, synergy analysis was performed on SO estimated activations, being found that the reconstructed activations produced poor matching of experimental activations and joint moments. As conclusion, it can be said that, although SynO did not improve prediction of muscle activations during gait, its reduced dimensional control space could be beneficial for applications such as functional electrical stimulation or motion control and prediction.

12.
Gait Posture ; 76: 98-103, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31751916

RESUMEN

BACKGROUND: Lower limb amputation is a major public health issue globally, and its prevalence is increasing significantly around the world. Previous studies on lower limb amputees showed analogous complexity implemented by the neurological system which does not depend on the level of amputation. RESEARCH QUESTION: What are the differences in muscle synergies between healthy subjects (HS) and transfemoral amputees (TFA) during self-selected normal transient-state walking speed? METHODS: thirteen male HS and eleven male TFA participated in this study. Surface electromyography (sEMG) data were collected from HS dominant leg and TFA intact limb. Concatenated non-negative matrix factorization (CNMF) was used to extract muscle synergy components synergy vectors (S) and activation coefficient profiles (C). Correlation between a pair of synergy vectors from HS and TFA was analyzed by means of the coefficient of determination (R2). Statistical parametric mapping (SPM) was used to compare the temporal components of the muscle synergies between groups. RESULTS: the highest correlation was perceived in synergy 2 (S2) and 3 (S3) and the lowest in synergy 1 (S1) and 4 (S4) between HS and TFA. Statistically significant differences were observed in all of the activation coefficients, particularly during the stance phase. Significant lag in the activation coefficient of S2 (due mainly to activated plantarflexors) resulted in a statistically larger portion of the gait cycle (GC) in stance phase in TFA. SIGNIFICANCE: Understanding the activation patterns of lower limb amputees' muscles that control their intact leg (IL) and prosthetic leg (PL) joints could lead to greater knowledge of neuromuscular compensation strategies in amputees. Studying the low-dimensional muscle synergy patterns in the lower limbs can further this understanding. The findings in this study could contribute to improving gait rehabilitation of lower limb amputees and development of the new generation of prostheses.


Asunto(s)
Amputación Quirúrgica , Miembros Artificiales , Fémur/cirugía , Músculo Esquelético/fisiología , Velocidad al Caminar , Adulto , Amputados/rehabilitación , Fenómenos Biomecánicos , Estudios de Casos y Controles , Electromiografía , Femenino , Marcha/fisiología , Humanos , Masculino , Persona de Mediana Edad
13.
J Biomech Eng ; 142(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31343670

RESUMEN

Because of its simplicity, static optimization (SO) is frequently used to resolve the muscle redundancy problem (i.e., more muscles than degrees-of-freedom (DOF) in the human musculoskeletal system). However, SO minimizes antagonistic co-activation and likely joint stiffness as well, which may not be physiologically realistic since the body modulates joint stiffness during movements such as walking. Knowledge of joint stiffness is limited due to the difficulty of measuring it experimentally, leading researchers to estimate it using computational models. This study explores how imposing a synergy structure on the muscle activations estimated by optimization (termed "synergy optimization," or SynO) affects calculated lower body joint stiffnesses during walking. By limiting the achievable muscle activations and coupling all time frames together, a synergy structure provides a potential mechanism for reducing indeterminacy and improving physiological co-activation but at the cost of a larger optimization problem. To compare joint stiffnesses produced by SynO (2-6 synergies) and SO, we used both approaches to estimate lower body muscle activations and forces for sample experimental overground walking data obtained from the first knee grand challenge competition. Both optimizations used a custom Hill-type muscle model that permitted analytic calculation of individual muscle contributions to the stiffness of spanned joints. Both approaches reproduced inverse dynamic joint moments well over the entire gait cycle, though SynO with only two synergies exhibited the largest errors. Maximum and mean joint stiffnesses for hip and knee flexion in particular decreased as the number of synergies increased from 2 to 6, with SO producing the lowest joint stiffness values. Our results suggest that SynO increases joint stiffness by increasing muscle co-activation, and furthermore, that walking with a reduced number of synergies may result in increased joint stiffness and perhaps stability.


Asunto(s)
Caminata , Humanos , Articulación de la Rodilla , Músculo Esquelético
14.
Front Bioeng Biotechnol ; 8: 588908, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33490046

RESUMEN

Muscle co-contraction generates joint stiffness to improve stability and accuracy during limb movement but at the expense of higher energetic cost. However, quantification of joint stiffness is difficult using either experimental or computational means. In contrast, quantification of muscle co-contraction using an EMG-based Co-Contraction Index (CCI) is easier and may offer an alternative for estimating joint stiffness. This study investigated the feasibility of using two common CCIs to approximate lower limb joint stiffness trends during gait. Calibrated EMG-driven lower extremity musculoskeletal models constructed for two individuals post-stroke were used to generate the quantities required for CCI calculations and model-based estimation of joint stiffness. CCIs were calculated for various combinations of antagonist muscle pairs based on two common CCI formulations: Rudolph et al. (2000) (CCI 1) and Falconer and Winter (1985) (CCI 2). CCI 1 measures antagonist muscle activation relative to not only total activation of agonist plus antagonist muscles but also agonist muscle activation, while CCI 2 measures antagonist muscle activation relative to only total muscle activation. We computed the correlation between these two CCIs and model-based estimates of sagittal plane joint stiffness for the hip, knee, and ankle of both legs. Although we observed moderate to strong correlations between some CCI formulations and corresponding joint stiffness, these associations were highly dependent on the methodological choices made for CCI computation. Specifically, we found that: (1) CCI 1 was generally more correlated with joint stiffness than was CCI 2, (2) CCI calculation using EMG signals with calibrated electromechanical delay generally yielded the best correlations with joint stiffness, and (3) choice of antagonist muscle pairs significantly influenced CCI correlation with joint stiffness. By providing guidance on how methodological choices influence CCI correlation with joint stiffness trends, this study may facilitate a simpler alternate approach for studying joint stiffness during human movement.

15.
Clin Biomech (Bristol, Avon) ; 67: 27-33, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31071535

RESUMEN

BACKGROUND: Voluntary activation deficit of the quadriceps muscle group is a common symptom in populations with knee joint injury. Musculoskeletal modeling and simulations can improve our understanding of pathological conditions; however, they are mathematically complex which can limit their clinical application. A practical subject-specific modeling framework is introduced to evaluate knee extensor inhibition and muscle force contributions to isometric knee joint torques in healthy adults with and without experimentally induced quadriceps muscle pain. METHODS: A randomized cross-over placebo controlled study design was used. Subject-specific maximum knee joint extension torque and quadriceps electromyographic data from 13 uninjured young adults were combined in a modeling framework to determine optimal muscle strength scaling parameters and ideal torque. Strength deficit ratios (experimental torque/ideal torque) and individual muscle contribution to experimental torque was computed before and after intramuscular hypertonic (pain inducing) and isotonic (sham) saline was injected to the vastus medialis. FINDINGS: Decreased experimental knee extension torque (-8%) and vastus medialis electromyography (-26%) amplitude pre- to post- hypertonic injection was observed. Correspondingly, significant decreases in the knee extensor strength deficit ratio (-18%) and percent contribution of vastus medialis to experimental torque (-24%) was observed pre- to post- hypertonic injection. No differences were observed with isotonic injections, confirming the validity of the model. INTERPRETATION: Our practical method to estimate strength ratios can be easily implemented within a musculoskeletal modeling framework to improve the validity of model estimates. This, in turn, can increase our understanding of the relationship between neuromuscular deficits and functional outcomes in patient populations.


Asunto(s)
Articulación de la Rodilla/fisiopatología , Mialgia/fisiopatología , Músculo Cuádriceps/fisiopatología , Adulto , Análisis de Varianza , Estudios Cruzados , Electromiografía , Femenino , Humanos , Traumatismos de la Rodilla/fisiopatología , Masculino , Fuerza Muscular/fisiología , Torque , Adulto Joven
16.
J Biomech ; 62: 132-139, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28774468

RESUMEN

The recent development of a soft tissue artifact (STA) suppression method allows us to re-evaluate the tibiofemoral kinematics currently linked to non-contact knee injuries. The purpose of this study was therefore to evaluate knee joint kinematics and kinetics in six degrees of freedom (DoF) during the loading phases of a jump lunge and side cut using this in silico method. Thirty-five healthy adults completed these movements and their surface marker trajectories were then scaled and processed with OpenSim's inverse kinematics (IK) and inverse dynamics tools. Knee flexion angle-dependent kinematic constraints defined based on previous bone pin (BP) marker trajectories were then applied to the OpenSim model during IK and these constrained results were then processed with the standard inverse dynamics tool. Significant differences for all hip, knee, and ankle DoF were observed after STA suppression for both the jump lunge and side cut. Using clinically relevant effect size estimates, we conclude that STA contamination had led to misclassifications in hip transverse plane angles, knee frontal and transverse plane angles, medial/lateral and distractive/compressive knee translations, and knee frontal plane moments between the NoBP and the BP IK solutions. Our results have substantial clinical implications since past research has used joint kinematics and kinetics contaminated by STA to identify risk factors for musculoskeletal injuries.


Asunto(s)
Articulación del Tobillo/fisiología , Lesiones del Ligamento Cruzado Anterior/fisiopatología , Artefactos , Articulación de la Cadera/fisiología , Articulación de la Rodilla/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Cinética , Masculino , Movimiento/fisiología , Adulto Joven
17.
J Biomech ; 62: 124-131, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28291516

RESUMEN

Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p<0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom.


Asunto(s)
Artefactos , Fémur/fisiología , Articulación de la Rodilla/fisiología , Modelos Biológicos , Movimiento/fisiología , Tibia/fisiología , Adolescente , Adulto , Fenómenos Biomecánicos , Humanos , Masculino , Movimiento (Física) , Programas Informáticos , Adulto Joven
18.
J Electromyogr Kinesiol ; 28: 158-66, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27156237

RESUMEN

The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue.


Asunto(s)
Electromiografía/métodos , Fatiga Muscular , Músculo Esquelético/fisiología , Adulto , Femenino , Humanos , Articulación de la Rodilla/fisiología , Masculino , Contracción Muscular , Postura , Análisis de Ondículas
19.
J Electromyogr Kinesiol ; 26: 36-43, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26755163

RESUMEN

The aim of this study was to evaluate non-negative matrix factorization (NMF) and concatenated NMF (CNMF) to analyze and reliably extract muscle synergies. NMF and CNMF were used to extract knee joint muscle synergies from surface EMGs collected during a weight bearing, force matching task. Repeatability and between subject similarity were evaluated for each method using intra-class correlation coefficients (ICCs). High repeatability was found for CNMF (>0.99; 0.99-1.0) compared to NMF (>0.26; range 0.26-0.98). Reasonable consistency across subjects was improved using the CNMF over the NMF approach. CNMF was found to be a more reliable approach than NMF and suitable for between subject comparison of muscle synergies.


Asunto(s)
Electromiografía/métodos , Electromiografía/normas , Músculo Esquelético/fisiología , Adulto , Algoritmos , Humanos , Masculino , Reproducibilidad de los Resultados , Soporte de Peso/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA