Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(34): 18902-18910, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32393945

RESUMEN

X-ray absorption spectroscopy is a common method for probing the local structure of nanocatalysts. One portion of the X-ray absorption spectrum, the X-ray absorption near edge structure (XANES) is a useful alternative to the commonly used extended X-ray absorption fine structure (EXAFS) for probing three-dimensional geometry around each type of atomic species, especially in those cases when the EXAFS data quality is limited by harsh reaction conditions and low metal loading. A methodology for quantitative determination of bimetallic architectures from their XANES spectra is currently lacking. We have developed a method, based on the artificial neural network, trained on ab initio site-specific XANES calculations, that enables accurate and rapid reconstruction of the structural descriptors (partial coordination numbers) from the experimental XANES data. We demonstrate the utility of this method on the example of a series of PdAu bimetallic nanoalloys. By validating the neural network-yielded metal-metal coordination numbers based on the XANES analysis by previous EXAFS characterization, we obtained new results for in situ restructuring of dilute (2.6 at% Pd in Au) PdAu nanoparticles, driven by their gas and temperature treatments.

2.
Commun Chem ; 3(1): 46, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-36703362

RESUMEN

Dilute alloys are promising materials for sustainable chemical production; however, their composition and structure affect their performance. Herein, a comprehensive study of the effects of pretreatment conditions on the materials properties of Pd0.04Au0.96 nanoparticles partially embedded in porous silica is related to the activity for catalytic hydrogenation of 1-hexyne to 1-hexene. A combination of in situ characterization and theoretical calculations provide evidence that changes in palladium surface content are induced by treatment in oxygen, hydrogen and carbon monoxide at various temperatures. In turn, there are changes in hydrogenation activity because surface palladium is necessary for H2 dissociation. These Pd0.04Au0.96 nanoparticles in the porous silica remain structurally intact under many cycles of activation and deactivation and are remarkably resistant to sintering, demonstrating that dilute alloy catalysts are highly dynamic systems that can be tuned and maintained in a active state.

4.
Nano Lett ; 19(1): 520-529, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30501196

RESUMEN

Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials. These factors all render the determination of PRDFs challenging. Here extended X-ray absorption fine structure (EXAFS) spectroscopy, molecular dynamics simulations, and supervised machine learning (artificial neural-network) method are combined to extract PRDFs directly from experimental data. By applying this method to several systems of Pt and PdAu NPs, we demonstrate the finite size effects on the nearest neighbor distributions, bond dynamics, and alloying motifs in mono- and bimetallic particles and establish the generality of this approach.

5.
Adv Mater ; 30(19): e1706329, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29349818

RESUMEN

Inorganic microstructured materials are ubiquitous in nature. However, their formation in artificial self-assembly systems is challenging as it involves a complex interplay of competing forces during and after assembly. For example, colloidal assembly requires fine-tuning of factors such as the size and surface charge of the particles and electrolyte strength of the solvent to enable successful self-assembly and minimize crack formation. Co-assembly of templating colloidal particles together with a sol-gel matrix precursor material helps to release stresses that accumulate during drying and solidification, as previously shown for the formation of high-quality inverse opal (IO) films out of amorphous silica. Expanding this methodology to crystalline materials would result in microscale architectures with enhanced photonic, electronic, and catalytic properties. This work describes tailoring the crystallinity of metal oxide precursors that enable the formation of highly ordered, large-area (mm2 ) crack-free titania, zirconia, and alumina IO films. The same bioinspired approach can be applied to other crystalline materials as well as structures beyond IOs.

6.
Chemistry ; 24(8): 1833-1837, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28960528

RESUMEN

A highly modular synthesis of designed catalysts with controlled bimetallic nanoparticle size and composition and a well-defined structural hierarchy is demonstrated. Exemplary catalysts-bimetallic dilute Ag-in-Au nanoparticles partially embedded in a porous SiO2 matrix (SiO2 -Agx Auy )-were synthesized by the decoration of polymeric colloids with the bimetallic nanoparticles followed by assembly into a colloidal crystal backfilled with the matrix precursor and subsequent removal of the polymeric template. This work reports that these new catalyst architectures are significantly better than nanoporous dilute AgAu alloy catalysts (nanoporous Ag3 Au97 ) while retaining a clear predictive relationship between their surface reactivity with that of single-crystal Au surfaces. This paves the way for broadening the range of new catalyst architectures required for translating the designed principles developed under controlled conditions to designed catalysts under operating conditions for highly selective coupling of alcohols to form esters. Excellent catalytic performance of the porous SiO2 -Agx Auy structure for selective oxidation of both methanol and ethanol to produce esters with high conversion efficiency, selectivity, and stability was demonstrated, illustrating the ability to translate design principles developed for support-free materials to the colloid-templated structures. The synthetic methodology reported is customizable for the design of a wide range of robust catalytic systems inspired by design principles derived from model studies. Fine control over the composition, morphology, size, distribution, and availability of the supported nanoparticles was demonstrated.

8.
Nat Commun ; 8: 14700, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28287116

RESUMEN

Mechanical forces in the cell's natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.


Asunto(s)
Técnicas de Cultivo de Célula , Oro/química , Hidrogeles/efectos de la radiación , Mecanotransducción Celular/fisiología , Células Madre Mesenquimatosas/citología , Nanotubos/química , Resinas Acrílicas/química , Resinas Acrílicas/efectos de la radiación , Animales , Diferenciación Celular , Línea Celular , Fluoresceínas/química , Colorantes Fluorescentes/química , Hidrogeles/química , Luz , Células Madre Mesenquimatosas/fisiología , Ratones , Imagen Óptica/métodos , Procesos Fotoquímicos , Estrés Mecánico , Temperatura
9.
Chem Soc Rev ; 45(2): 281-322, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26395819

RESUMEN

Nature evolved a variety of hierarchical structures that produce sophisticated functions. Inspired by these natural materials, colloidal self-assembly provides a convenient way to produce structures from simple building blocks with a variety of complex functions beyond those found in nature. In particular, colloid-based porous materials (CBPM) can be made from a wide variety of materials. The internal structure of CBPM also has several key attributes, namely porosity on a sub-micrometer length scale, interconnectivity of these pores, and a controllable degree of order. The combination of structure and composition allow CBPM to attain properties important for modern applications such as photonic inks, colorimetric sensors, self-cleaning surfaces, water purification systems, or batteries. This review summarizes recent developments in the field of CBPM, including principles for their design, fabrication, and applications, with a particular focus on structural features and materials' properties that enable these applications. We begin with a short introduction to the wide variety of patterns that can be generated by colloidal self-assembly and templating processes. We then discuss different applications of such structures, focusing on optics, wetting, sensing, catalysis, and electrodes. Different fields of applications require different properties, yet the modularity of the assembly process of CBPM provides a high degree of tunability and tailorability in composition and structure. We examine the significance of properties such as structure, composition, and degree of order on the materials' functions and use, as well as trends in and future directions for the development of CBPM.


Asunto(s)
Coloides/química , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
10.
Proc Natl Acad Sci U S A ; 112(35): 10845-50, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26290583

RESUMEN

Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

11.
Opt Express ; 22(23): 27750-68, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25402020

RESUMEN

We present a simple one-pot co-assembly method for the synthesis of hierarchically structured pigment particles consisting of silica inverse-opal bricks that are doped with plasmonic absorbers. We study the interplay between the plasmonic and photonic resonances and their effect on the visual appearance of macroscopic collections of photonic bricks that are distributed in randomized orientations. Manipulating the pore geometry tunes the wavelength- and angle-dependence of the scattering profile, which can be engineered to produce angle-dependent Bragg resonances that can either enhance or contrast with the color produced by the plasmonic absorber. By controlling the overall dimensions of the photonic bricks and their aspect ratios, their preferential alignment can either be encouraged or suppressed. This causes the Bragg resonance to appear either as uniform color travel in the former case or as sparse iridescent sparkle in the latter case. By manipulating the surface chemistry of these photonic bricks, which introduces a fourth length-scale (molecular) of independent tuning into our design, we can further engineer interactions between liquids and the pores. This allows the structural color to be maintained in oil-based formulations, and enables the creation of dynamic liquid-responsive images from the pigment.


Asunto(s)
Colorantes/análisis , Nanoestructuras/química , Fotones , Dióxido de Silicio/química , Color
12.
Chem Commun (Camb) ; 49(34): 3531-3, 2013 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-23515293

RESUMEN

Halogen bonding between complementary organic monolayers was directly observed in an organic environment using force spectroscopy. This non-covalent interaction is significantly affected by the nature of the organic media. We also demonstrated the effect of lateral packing interactions on the optical properties of the monolayers.

14.
ACS Nano ; 5(8): 6553-63, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21749110

RESUMEN

In this study halogen bonding (XB) is used as the driving force for the noncovalent assembly of gold nanoparticles (AuNPs) on silicon and quartz substrates functionalized with organic monolayers. The AuNPs are functionalized with XB-donor ligands, whereas the monolayers have pyridine groups as XB-acceptors. The surface-confined systems are formed by iteratively exposing the monolayers to solutions of organic cross-linkers having 2-4 pyridine groups and functionalized AuNPs. UV-vis spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) reveal how the structure of the resulting surface-bound assemblies are controlled by (i) the properties of the monolayers, (ii) the molecular structure and the number of XB binding sites of the organic cross-linker, and (iii) the number of functionalized AuNP and cross-linker deposition steps. Moreover, these structures exhibit surface-enhanced Raman scattering and significant changes are observed in the morphology of some of the surface-bound assemblies upon aging.

16.
J Am Chem Soc ; 130(26): 8162-3, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18529052

RESUMEN

Polycrystalline halogen-bonded assemblies fabricated by physical vapor deposition (PVD) exhibit controllable morphologies and microstructures. Although the solid-state packing may vary going from a solution crystal growth process (used for chromophore single-crystal determination) to a vapor-phase deposition process (used for PVD film fabrication), the corresponding film microstructures are independent of the substrate surface chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA