Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 11(3): 307-27, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19470103

RESUMEN

The continuity of the xylem water columns was studied on 17- to 23-m tall birch trees (trunk diameter about 23 cm; first branching above 10 m) all year round. Fifty-one trees were felled, and 5-cm thick slices or 2-m long boles were taken at regular, relatively short intervals over the entire height of the trees. The filling status of the vessels was determined by (i) xylem sap extraction from trunk and branch pieces (using the gas bubble-based jet-discharge method and centrifugation) and from trunk boles (using gravity discharge); (ii) (1)H nuclear magnetic resonance imaging of slice pieces; (iii) infusion experiments (dye, (86)Rb(+), D(2)O) on intact trees and cut branches; and (iv) xylem pressure measurements. This broad array of techniques disclosed no evidence for continuous water-filled columns, as postulated by the Cohesion-Tension theory, for root to apex directed mass transport. Except in early spring (during the xylem refilling phase) and after extremely heavy rainfall during the vegetation period, cohesive/mobile water was found predominantly at intermediate heights of the trunks but not at the base or towards the top of the tree. Similar results were obtained for branches. Furthermore, upper branches generally contained more cohesive/mobile water than lower branches. The results suggest that water lifting occurs by short-distance (capillary, osmotic and/or transpiration-bound) tension gradients as well as by mobilisation of water in the parenchymatic tissues and the heartwood, and by moisture uptake through lenticels.


Asunto(s)
Betula/fisiología , Transpiración de Plantas/fisiología , Árboles/fisiología , Agua/fisiología , Xilema/fisiología , Transporte Biológico/fisiología , Raíces de Plantas/fisiología , Tallos de la Planta/fisiología
2.
Plant Biol (Stuttg) ; 10(5): 604-23, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18761499

RESUMEN

Seasonal variations in osmolality and components of xylem sap in tall birch trees were determined using several techniques. Xylem sap was extracted from branch and trunk sections of 58 trees using the very rapid gas bubble-based jet-discharge method. The 5-cm long wood pieces were taken at short intervals over the entire tree height. The data show that large biphasic osmolality gradients temporarily exist within the conducting xylem conduits during leaf emergence (up to 272 mosmol x kg(-1) at the apex). These gradients (arising mainly from glucose and fructose) were clearly held within the xylem conduit as demonstrated by (1)H NMR imaging of intact twigs. Refilling experiments with benzene, sucrose infusion, electron and light microscopy, as well as (1)H NMR chemical shift microimaging provided evidence that the xylem of birch represents a compartment confined by solute-reflecting barriers (radial: lipid linings/lipid bodies; axial: presumably air-filled spaces). These features allow transformation of osmolality gradients into osmotic pressure gradients. Refilling of the xylem occurs by a dual mechanism: from the base (by root pressure) and from the top (by hydrostatic pressure generated by xylem-bound osmotic pressure). The generation of osmotic pressure gradients was accompanied by bleeding. Bleeding could be observed at a height of up to 21 m. Bleeding rates measured at a given height decreased exponentially with time. Evidence is presented that the driving force for bleeding is the weight of the static water columns above the bleeding point. The pressure exerted by the water columns and the bleeding volume depend on the water-filling status of (communicating) vessels.


Asunto(s)
Betula/fisiología , Raíces de Plantas/fisiología , Árboles/fisiología , Agua/fisiología , Xilema/fisiología , Metabolismo de los Hidratos de Carbono , Electrólitos/metabolismo , Espectroscopía de Resonancia Magnética , Concentración Osmolar , Presión Osmótica , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA