Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8125, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284803

RESUMEN

Although GaP, a III-V compound semiconductor, has been extensively utilized in the optoelectronic industry for decades as a traditional material, the inherent indirect bandgap nature of GaP limits its efficiency. Here, we demonstrate an indirect-to-direct bandgap transition of GaP through the formation of quantum shells on the surface of ZnS nanocrystals. The ZnS/GaP quantum shell with a reverse-type I heterojunction, consisting of a monolayer-thin GaP shell grown atop a ZnS core, exhibits a record-high photoluminescence quantum yield of 45.4% in the violet emission range (wavelength = 409 nm), validating its direct bandgap nature. Density functional theory calculations further reveal that ZnS nanocrystals, as the growth platform for GaP quantum shells, play a crucial role in the direct bandgap formation through hybridization of electronic states with GaP. These findings suggest potential for achieving direct bandgaps in compounds that are constrained by their inherent indirect energy gaps, offering a strategy for tailoring energy structures to significantly improve efficiencies in optoelectronics and photovoltaics.

2.
Nat Commun ; 15(1): 6996, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143052

RESUMEN

Three-dimensional optical nanostructures have garnered significant interest in photonics due to their extraordinary capabilities to manipulate the amplitude, phase, and polarization states of light. However, achieving complex three-dimensional optical nanostructures with bottom-up fabrication has remained challenging, despite its nanoscale precision and cost-effectiveness, mainly due to inherent limitations in structural controllability. Here, we report the optical characteristics of intricate two- and three-dimensional nanoarchitectures made of colloidal quantum dots fabricated with multi-dimensional transfer printing. Our customizable fabrication platform, directed by tailored interface polarity, enables flexible geometric control over a variety of one-, two-, and three-dimensional quantum dot architectures, achieving tunable and advanced optical features. For example, we demonstrate a two-dimensional quantum dot nanomesh with tuned subwavelength square perforations designed by finite-difference time-domain calculations, achieving an 8-fold enhanced photoluminescence due to the maximized optical resonance. Furthermore, a three-dimensional quantum dot chiral structure is also created via asymmetric stacking of one-dimensional quantum dot layers, realizing a pronounced circular dichroism intensity exceeding 20°.

3.
ACS Nano ; 16(10): 16598-16607, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36130159

RESUMEN

Although the commercialization of electroluminescent quantum-dot (QD) displays essentially demands multicolor patterning of QDs with sufficient scalability and uniformity, the implementation of QD patterning in a light-emitting diode device is highly challenging, mainly due to the innate vulnerability of QDs and charge-transport layers. Here, we introduce a noninvasive surface-wetting approach for patterning full-color QD arrays on a photoprogrammed hole-transport layer (HTL). To achieve noninvasiveness of QD patterning, surface-specific modification of HTLs was performed without degrading their performance. Moreover, engineering the solvent evaporation kinetics allows area-selective wetting of QD patterns with a uniform thickness profile. Finally, multicolor QD patterning was enabled by preventing cross-contamination between different QD colloids via partial fluoro-encapsulation of earlier-patterned QDs. Throughout the overall QD patterning process, the optoelectronic properties of QDs and hole-transport layers are well preserved, and prototype electroluminescent quantum dot light-emitting diode arrays with high current efficiency and brightness were realized.

4.
Small ; 16(40): e2002109, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32930494

RESUMEN

Environmentally friendly ZnSe/ZnS core/shell quantum dots (QDs) as an alternative blue emission material to Cd-based QDs have shown great potential for use in next-generation displays. However, it remains still challenging to realize a high-efficiency quantum dot light-emitting diode (QLED) based on ZnSe/ZnS QDs due to their insufficient electrical characteristics, such as excessively high electron mobility (compared to the hole mobility) and the deep-lying valence band. In this work, the effects of QDs doped with hole transport materials (hybrid QDs) on the electrical characteristics of a QLED are investigated. These hybrid QDs show a p-type doping effect, which leads to a change in the density of the carriers. Specifically, the hybrid QDs can balance electrons and holes by suppressing the overflow of electrons and improving injection of holes, respectively. These electrical characteristics help to improve device performance. In detail, an external quantum efficiency (EQE) of 6.88% is achieved with the hybrid QDs. This is increased by 180% compared to a device with pure ZnSe/ZnS QDs (EQE of 2.46%). This record is the highest among deep-blue Cd-free QLED devices. These findings provide the importance of p-type doping effect in QD layers and guidance for the study of the electrical properties of QDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA