Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931577

RESUMEN

Existing galvanometer-based laser-scanning systems are challenging to apply in multi-scale 3D reconstruction because of the difficulty in achieving a balance between a high reconstruction accuracy and a wide reconstruction range. This paper presents a novel method that synchronizes laser scanning by switching the field-of-view (FOV) of a camera using multi-galvanometers. Beyond the advanced hardware setup, we establish a comprehensive geometric model of the system by modeling dynamic camera, dynamic laser, and their combined interaction. Furthermore, since existing calibration methods mainly focus on either dynamic lasers or dynamic cameras and have certain limitations, we propose a novel high-precision and flexible calibration method by constructing an error model and minimizing the objective function. The performance of the proposed method was evaluated by scanning standard components. The results show that the proposed 3D reconstruction system achieves an accuracy of 0.3 mm when the measurement range is extended to 1100 mm × 1300 mm × 650 mm. This demonstrates that for meter-scale reconstruction ranges, a sub-millimeter measurement accuracy is achieved, indicating that the proposed method realizes multi-scale 3D reconstruction and simultaneously allows for high-precision and wide-range 3D reconstruction in industrial applications.

2.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931801

RESUMEN

Active vision systems (AVSs) have been widely used to obtain high-resolution images of objects of interest. However, tracking small objects in high-magnification scenes is challenging due to shallow depth of field (DoF) and narrow field of view (FoV). To address this, we introduce a novel high-speed AVS with a continuous autofocus (C-AF) approach based on dynamic-range focal sweep and a high-frame-rate (HFR) frame-by-frame tracking pipeline. Our AVS leverages an ultra-fast pan-tilt mechanism based on a Galvano mirror, enabling high-frequency view direction adjustment. Specifically, the proposed C-AF approach uses a 500 fps high-speed camera and a focus-tunable liquid lens operating at a sine wave, providing a 50 Hz focal sweep around the object's optimal focus. During each focal sweep, 10 images with varying focuses are captured, and the one with the highest focus value is selected, resulting in a stable output of well-focused images at 50 fps. Simultaneously, the object's depth is measured using the depth-from-focus (DFF) technique, allowing dynamic adjustment of the focal sweep range. Importantly, because the remaining images are only slightly less focused, all 500 fps images can be utilized for object tracking. The proposed tracking pipeline combines deep-learning-based object detection, K-means color clustering, and HFR tracking based on color filtering, achieving 500 fps frame-by-frame tracking. Experimental results demonstrate the effectiveness of the proposed C-AF approach and the advanced capabilities of the high-speed AVS for magnified object tracking.

3.
Sensors (Basel) ; 23(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177489

RESUMEN

This study focuses on solving the correspondence problem of multiple moving objects with similar appearances in stereoscopic videos. Specifically, we address the multi-camera correspondence problem by taking into account the pixel-level and feature-level stereo correspondences, and object-level cross-camera multiple object correspondence. Most correspondence algorithms rely on texture and color information of the stereo images, making it challenging to distinguish between similar-looking objects, such as ballet dancers and corporate employees wearing similar dresses, or farm animals such as chickens, ducks, and cows. However, by leveraging the low latency and high synchronization of high-speed cameras, we can perceive the phase and frequency differences between the movements of similar-looking objects. In this study, we propose using short-term velocities (STVs) of objects as motion features to determine the correspondence of multiple objects by calculating the similarity of STVs. To validate our approach, we conducted stereo correspondence experiments using markers attached to a metronome and natural hand movements to simulate simple and complex motion scenes. The experimental results demonstrate that our method achieved good performance in stereo correspondence.

4.
Sensors (Basel) ; 23(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37112491

RESUMEN

This study proposes a visual tracking system that can detect and track multiple fast-moving appearance-varying targets simultaneously with 500 fps image processing. The system comprises a high-speed camera and a pan-tilt galvanometer system, which can rapidly generate large-scale high-definition images of the wide monitored area. We developed a CNN-based hybrid tracking algorithm that can robustly track multiple high-speed moving objects simultaneously. Experimental results demonstrate that our system can track up to three moving objects with velocities lower than 30 m per second simultaneously within an 8-m range. The effectiveness of our system was demonstrated through several experiments conducted on simultaneous zoom shooting of multiple moving objects (persons and bottles) in a natural outdoor scene. Moreover, our system demonstrates high robustness to target loss and crossing situations.

5.
Sensors (Basel) ; 21(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34282780

RESUMEN

Vision-based structural displacement methods allow convenient monitoring of civil structures such as bridges, though they are often limited due to the small number of measurement points, constrained spatial resolution, and inability to identify the acting forces of the measured displacement. To increase the number of measurement points in vision-based bridge displacement measurement, this study introduces a front-view tandem marker motion capture system with side-view traffic counting to identify the force-inducing passing vehicles on the bridge's deck. The proposed system was able to measure structural displacement at submillimeter resolution on eight measurement points at once at a distance of 40.8-64.2 m from a front-view camera. The traffic counting system with a side-view camera recorded the passing vehicles from two opposing lanes. We conducted a 35-min experiment for a 25 m-span steel road bridge with hundreds of cars passing over it and confirmed dynamic displacement distributions with amplitudes of several millimeters when large vehicles passed.


Asunto(s)
Vehículos a Motor , Movimiento (Física)
6.
Sensors (Basel) ; 20(18)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961714

RESUMEN

This study develops a projector-camera-based visible light communication (VLC) system for real-time broadband video streaming, in which a high frame rate (HFR) projector can encode and project a color input video sequence into binary image patterns modulated at thousands of frames per second and an HFR vision system can capture and decode these binary patterns into the input color video sequence with real-time video processing. For maximum utilization of the high-throughput transmission ability of the HFR projector, we introduce a projector-camera VLC protocol, wherein a multi-level color video sequence is binary-modulated with a gray code for encoding and decoding instead of pure-code-based binary modulation. Gray code encoding is introduced to address the ambiguity with mismatched pixel alignments along the gradients between the projector and vision system. Our proposed VLC system consists of an HFR projector, which can project 590 × 1060 binary images at 1041 fps via HDMI streaming and a monochrome HFR camera system, which can capture and process 12-bit 512 × 512 images in real time at 3125 fps; it can simultaneously decode and reconstruct 24-bit RGB video sequences at 31 fps, including an error correction process. The effectiveness of the proposed VLC system was verified via several experiments by streaming offline and live video sequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA