Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 33(23)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35289768

RESUMEN

In this paper, we are reporting on the fabrication of a porous silicon/Au and silicon filament/Au using the two-step Au-assisted chemical etching of p-type Si with a specific resistivity of 0.01, 1, and 12 Ω·cm when varying the Au deposition times. The structure analysis results show that with an increasing Au deposition time of up to 7 min, the thickness of the porous Si layer increases for the same etching duration (60 min), and the morphology of the layer changes from porous to filamentary. This paper shows that the uniform macro-porous layers with a thickness of 125.5-171.2µm and a specific surface area of the mesopore sidewalls of 142.5-182 m2·g-1are formed on the Si with a specific resistivity of 0.01 Ω·cm. The gradient macro-porous layers with a thickness of 220-260µm and 210-290µm, the specific surface area of the mesopore sidewalls of 3.7-21.7 m2·g-1and 17-29 m2·g-1are formed on the silicon with a specific resistivity of 1 and 12 Ω·cm, respectively. The por-Si/Au has excellent low-temperature electro oxidation performance with ethanol, the activity of ethanol oxidation is mainly due to the synergistic effect of the Au nanoparticles and porous Si. The formation mechanism of the uniform and gradient macro-porous layers and ethanol electro-oxidation on the porous/filament silicon, decorated with Au nanoparticles, was established. The por-Si/Au structures with perpendicularly oriented pores, a high por-Si layer thickness, and a low mono-Si layer thickness (with a specific resistivity of 1 Ω·cm) are optimal for an effective ethanol electro-oxidation, which has been confirmed with chronoamperometry measurements.

2.
Nanomaterials (Basel) ; 10(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126656

RESUMEN

This study is devoted to the confinement effects on freezing and melting in electrochemical systems containing nanomaterial electrodes and liquid electrolytes. The melting of nanoparticles formed upon freezing of liquids confined in pores of disordered nanostructured n-type silicon has been studied by low-temperature differential scanning calorimetry. Experimental results obtained for deionized water, an aqueous solution of potassium sulfate, and n-decane are presented. A model is proposed for predicting the melting point of nanoparticles formed during freezing of liquids inside the pores of a disordered nanostructured material. The model is based on the classical thermodynamic concept of the phase transition temperature dependence on the particle size. It takes into account the issues arising when a liquid is dispersed in a matrix of another material: the effect of mechanical stress resulted from the difference in the thermal linear expansion coefficients at a temperature gradient, the effect of the volumetric liquid content in the matrix, the presence of a nonfreezing liquid layer inside the pores, and the effect of wettability of the matrix with the liquid. Model calculations for water and n-decane confined in nanostructured silicon matrix have been carried out considering the volumetric liquid content. The results obtained have been compared with the differential scanning calorimetry data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA