Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 231-41, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531458

RESUMEN

Squalene synthase (SQS) is a divalent metal-ion-dependent enzyme that catalyzes the two-step reductive `head-to-head' condensation of two molecules of farnesyl pyrophosphate to form squalene using presqualene diphosphate (PSPP) as an intermediate. In this paper, the structures of human SQS and its mutants in complex with several substrate analogues and intermediates coordinated with Mg2+ or Mn2+ are presented, which stepwise delineate the biosynthetic pathway. Extensive study of the SQS active site has identified several critical residues that are involved in binding reduced nicotinamide dinucleotide phosphate (NADPH). Based on mutagenesis data and a locally closed (JK loop-in) structure observed in the hSQS-(F288L)-PSPP complex, an NADPH-binding model is proposed for SQS. The results identified four major steps (substrate binding, condensation, intermediate formation and translocation) of the ordered sequential mechanisms involved in the `1'-1' isoprenoid biosynthetic pathway. These new findings clarify previous hypotheses based on site-directed mutagenesis and biochemical analysis.


Asunto(s)
Farnesil Difosfato Farnesil Transferasa/química , Magnesio/química , Manganeso/química , NADP/química , Escualeno/química , Biocatálisis , Dominio Catalítico , Cationes Bivalentes , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Farnesil Difosfato Farnesil Transferasa/genética , Expresión Génica , Humanos , Magnesio/metabolismo , Manganeso/metabolismo , Mutagénesis Sitio-Dirigida , NADP/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Sesquiterpenos/metabolismo , Escualeno/metabolismo , Electricidad Estática
2.
PLoS One ; 8(1): e54187, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23349821

RESUMEN

Drosophila melanogaster crammer is a novel cathepsin inhibitor involved in long-term memory formation. A molten globule-to-ordered structure transition is required for cathepsin inhibition. This study reports the use of alanine scanning to probe the critical residues in the two hydrophobic cores and the salt bridges of crammer in the context of disorder-to-order transition and cathepsin inhibition. Alanine substitution of the aromatic residues W9, Y12, F16, Y20, Y32, and W53 within the hydrophobic cores, and charged residues E8, R28, R29, and E67 in the salt bridges considerably decrease the ability of crammer to inhibit Drosophila cathepsin B (CTSB). Far-UV circular dichroism (CD), intrinsic fluorescence, and nuclear magnetic resonance (NMR) spectroscopies show that removing most of the aromatic and charged side-chains substantially reduces thermostability, alters pH-dependent helix formation, and disrupts the molten globule-to-ordered structure transition. Molecular modeling indicates that W53 in the hydrophobic Core 2 is essential for the interaction between crammer and the prosegment binding loop (PBL) of CTSB; the salt bridge between R28 and E67 is critical for the appropriate alignment of the α-helix 4 toward the CTSB active cleft. The results of this study show detailed residue-specific dissection of folding transition and functional contributions of the hydrophobic cores and salt bridges in crammer, which have hitherto not been characterized for cathepsin inhibition by propeptide-like cysteine protease inhibitors. Because of the involvements of cathepsin inhibitors in neurodegenerative diseases, these structural insights can serve as a template for further development of therapeutic inhibitors against human cathepsins.


Asunto(s)
Alanina/química , Catepsina B/antagonistas & inhibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/farmacología , Alanina/genética , Alanina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Catepsina B/metabolismo , Dicroismo Circular , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/genética , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Temperatura
3.
Biochem J ; 442(3): 563-72, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22150223

RESUMEN

Drosophila melanogaster crammer is a novel cathepsin inhibitor that is involved in LTM (long-term memory) formation. The mechanism by which the inhibitory activity is regulated remains unclear. In the present paper we have shown that the oligomeric state of crammer is pH dependent. At neutral pH, crammer is predominantly dimeric in vitro as a result of disulfide bond formation, and is monomeric at acidic pH. Our inhibition assay shows that monomeric crammer, not disulfide-bonded dimer, is a strong competitive inhibitor of cathepsin L. Crammer is a monomeric molten globule in acidic solution, a condition that is similar to the environment in the lysosome where crammer is probably located. Upon binding to cathepsin L, however, crammer undergoes a molten globule-to-ordered structural transition. Using high-resolution NMR spectroscopy, we have shown that a cysteine-to-serine point mutation at position 72 (C72S) renders crammer monomeric at pH 6.0 and that the structure of the C72S variant highly resembles that of wild-type crammer in complex with cathepsin L at pH 4.0. We have determined the first solution structure of propeptide-like protease inhibitor in its active form and examined in detail using a variety of spectroscopic methods the folding properties of crammer in order to delineate its biomolecular recognition of cathepsin.


Asunto(s)
Catepsinas/antagonistas & inhibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Animales , Sitios de Unión , Catepsinas/metabolismo , Dimerización , Drosophila melanogaster , Concentración de Iones de Hidrógeno , Conformación Proteica , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA