Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1449101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156112

RESUMEN

Astragalus membranaceus widely used in traditional Chinese medicine, exhibits multiple pharmacological effects, including immune stimulation, antioxidation, hepatoprotection, diuresis, antidiabetes, anticancer, and expectorant properties. Its main bioactive compounds include flavonoids, triterpene saponins, and polysaccharides. Astragalus polysaccharides (APS), one of its primary bioactive components, have been shown to possess a variety of pharmacological activities, such as antioxidant, immunomodulatory, anti-inflammatory, antitumor, antidiabetic, antiviral, hepatoprotective, anti-atherosclerotic, hematopoietic, and neuroprotective effects. This review provides a comprehensive summary of the molecular mechanisms and therapeutic effects of APS in treating neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). It discusses how APS improve insulin resistance, reduce blood glucose levels, enhance cognitive function, and reduce Aß accumulation and neuronal apoptosis by modulating various pathways such as Nrf2, JAK/STAT, Toll, and IMD. For PD, APS protect neurons and stabilize mitochondrial function by inhibiting ROS production and promoting autophagy through the PI3K/AKT/mTOR pathway. APS also reduce oxidative stress and neurotoxicity induced by 6-hydroxydopamine, showcasing their neuroprotective effects. In MS, APS alleviate symptoms by suppressing T cell proliferation and reducing pro-inflammatory cytokine expression via the PD-1/PD-Ls pathway. APS promote myelin regeneration by activating the Sonic hedgehog signaling pathway and fostering the differentiation of neural stem cells into oligodendrocytes. This article emphasizes the significant antioxidant, anti-inflammatory, immunomodulatory, and neuroprotective pharmacological activities of APS, highlighting their potential as promising candidates for the treatment of neurodegenerative diseases.

2.
Front Cardiovasc Med ; 9: 952657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966568

RESUMEN

Background: Wenxin Keli (WXKL) has good clinical value in the treatment of premature ventricular contractions, but there is insufficient evidence to support it. This study evaluates the efficacy and safety of WXKL combined with metoprolol tartrate in the treatment of ventricular premature beats (VPCs). Methods: We searched seven databases to identify randomized controlled trials (RCTs) for this study. Two reviewers independently screened and extracted the data. The Cochrane Manual criteria were used for methodological quality assessment. Meta-analyses were performed using Review Manager 5.4.1 software. Risk ratios (RR) were used for effect sizes for dichotomous data, demonstrated in effect sizes and 95% confidence intervals (CIs). Results: A total of 11 RCTs of WXKL combined with metoprolol tartrate in the treatment of premature ventricular contractions were included in this study. Meta-analysis showed that WXKL combined with metoprolol tartrate (treatment group) was more effective than metoprolol tartrate (control group) in improving premature ventricular contractions (RR = 1.32, 95% CI: [1.24, 1.40], P < 0.00001); significantly improved the rate of premature ventricular contractions (RR = 1.32, 95% CI: [1.23, 1.41], P < 0.00001); there was no difference in adverse drug reactions compared with the control group (RR = 0.61, 95% CI: [0.35, 0.1.05], P = 0.08), but the number of adverse reactions (n = 18) was less than that of the control group (n = 32), and the severity was lower than that of the control group. The included studies only mentioned randomization and did not describe the generation of random sequences in detail. Conclusion: This study found that Wenxin Keli combined with metoprolol tartrate in the treatment of premature ventricular contractions increased the efficacy of the drug, reduced the occurrence of adverse reactions, and reduced the severity of adverse reactions. Due to the quality limitations of the included studies, more high-quality RCTs are needed in the future to provide more evidence for longer-term analyses.

3.
Biomed Pharmacother ; 149: 112866, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367767

RESUMEN

Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1ß, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.


Asunto(s)
Enfermedad de Parkinson , Antioxidantes/farmacología , Humanos , Medicina Tradicional China , Enfermedad de Parkinson/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA