Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Endocrinol ; 578: 112076, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769867

RESUMEN

Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age and is a significant cause of female subfertility. Our previous research demonstrated that the abnormal palmitoylation of heat shock protein-90α (HSP90α) plays a role in the development of PCOS. However, the palmitoyl acyltransferases in HSP90α palmitoylation remain poorly understood. Herein, we identified ZDHHC17 as a major palmitoyl acyltransferase for HSP90α palmitoylation in granulosa cells. ZDHHC17 protein expression was diminished under excess androgen conditions in vitro and in vivo. Consistently, ovarian ZDHHC17 expression was found to be attenuated in patients with PCOS. ZDHHC17 depletion decreased HSP90α palmitoylation levels and hampered the conversion of androgen to estrogen via CYP19A1. Furthermore, ZDHHC17-mediated regulation of CYP19A1 expression was dependent on HSP90α palmitoylation. Our findings reveal that the regulatory role of HSP90α palmitoylation by ZDHHC17 is critical in PCOS pathophysiology and provide insights into the role of ZDHHC17 in reproductive endocrinology.

2.
EMBO Rep ; 24(8): e56437, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37306047

RESUMEN

Homologous recombination (HR), a form of error-free DNA double-strand break (DSB) repair, is important for the maintenance of genomic integrity. Here, we identify a moonlighting protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a regulator of HR repair, which is mediated through HDAC1-dependent regulation of RAD51 stability. Mechanistically, in response to DSBs, Src signaling is activated and mediates GAPDH nuclear translocation. Then, GAPDH directly binds with HDAC1, releasing it from its suppressor. Subsequently, activated HDAC1 deacetylates RAD51 and prevents it from undergoing proteasomal degradation. GAPDH knockdown decreases RAD51 protein levels and inhibits HR, which is re-established by overexpression of HDAC1 but not SIRT1. Notably, K40 is an important acetylation site of RAD51, which facilitates stability maintenance. Collectively, our findings provide new insights into the importance of GAPDH in HR repair, in addition to its glycolytic activity, and they show that GAPDH stabilizes RAD51 by interacting with HDAC1 and promoting HDAC1 deacetylation of RAD51.


Asunto(s)
Reparación del ADN , Reparación del ADN por Recombinación , Recombinación Homóloga , Roturas del ADN de Doble Cadena , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
3.
Cell Mol Life Sci ; 80(6): 159, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37209177

RESUMEN

Although iron overload is closely related to the occurrence of type 2 diabetes mellitus (T2DM), the specific mechanism is unclear. Here, we found that excessive iron inhibited the secretion of insulin (INS) and impaired islet ß cell function through downregulating Synaptotagmin 7 (SYT7) in iron overload model in vivo and in vitro. Our results further demonstrated that 8-oxoguanine DNA glycosylase (OGG1), a key protein in the DNA base excision repair, was an upstream regulator of SYT7. Interestingly, such regulation could be suppressed by excessive iron. Ogg1-null mice, iron overload mice and db/db mice exhibit reduced INS secretion, weakened ß cell function and subsequently impaired glucose tolerance. Notably, SYT7 overexpression could rescue these phenotypes. Our data revealed an intrinsic mechanism by which excessive iron inhibits INS secretion through perturbing the transcriptional regulation of SYT7 by OGG1, which suggested that SYT7 was a potential target in clinical therapy for T2DM.


Asunto(s)
ADN Glicosilasas , Diabetes Mellitus Tipo 2 , Sinaptotagminas , Animales , Ratones , Diabetes Mellitus Tipo 2/genética , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN , Secreción de Insulina , Hierro , Ratones Noqueados , Estrés Oxidativo
4.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768821

RESUMEN

Short-term starvation (STS) during chemotherapy can block the nutrient supply to tumors and make tumor cells much more sensitive to chemotherapeutic drugs than normal cells. However, because of the diversity of starvation methods and the heterogeneity of tumors, this method's specific effects and mechanisms for chemotherapy are still poorly understood. In this study, we used HeLa cells as a model for short-term starvation and etoposide (ETO) combined treatment, and we also mimicked the short-term starvation effect by knocking down the glycolytic enzyme GAPDH to explore the exact molecular mechanism. In addition, our study demonstrated that short-term starvation protects cancer cells against the chemotherapeutic agent ETO by reducing DNA damage and apoptosis due to the STS-induced cell cycle G1 phase block and S phase reduction, thereby diminishing the effect of ETO. Furthermore, these results suggest that starvation therapy in combination with cell cycle-specific chemotherapeutic agents must be carefully considered.


Asunto(s)
Apoptosis , Inanición , Humanos , Células HeLa , Ciclo Celular , División Celular , Etopósido/farmacología , Fase G1
5.
Biochem Biophys Res Commun ; 621: 137-143, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-35834922

RESUMEN

DNA Polymerase ß (Polß) is a key enzyme in base excision repair (BER), which is very important in maintaining the stability and integrity of the genome. Mutant Polß is closely associated with carcinogenesis. However, Polß is highly expressed in most cancers, but the underlying mechanism is not well understood. Here, we found that breast cancer cells MCF-7 with Polß knockdown exhibited high levels of type I interferon and were easily eliminated by natural killer (NK) cells.Similarly, Polß-mutant (R137Q) mice exhibited chronic inflammation symptoms in multiple organs and upregulated type I interferon levels. Further results showed that Polß deficiency caused more DNA damage accumulation in cells and triggered the leakage of damaged DNA into the cytoplasm, which activated the STING/IRF3 pathway, promoted phosphorylated IRF3 translocating into the nucleus and enhanced the expression of type I interferon and proinflammatory cytokines. In addition, this effect could be eliminated by Polß overexpression, STING inhibitor or STING knockdown. Taken together, our findings provide mechanistic insight into the role of Polß in cancers by linking DNA repair and the inflammatory STING pathway.


Asunto(s)
ADN Polimerasa beta/metabolismo , Interferón Tipo I , Animales , Daño del ADN , Reparación del ADN , Proteínas de la Membrana/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA