Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 2): 132901, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848854

RESUMEN

H5-subtype avian influenza virus (AIV) is globally prevalent and undergoes frequent antigenic drift, necessitating regular updates to vaccines. One of the many influencing elements that cause incompatibility between vaccinations and epidemic strains is the dynamic alteration of glycosylation sites. However, the biological significance of N-glycosylation in the viral evolution and antigenic changes is unclear. Here, we performed a systematic analysis of glycosylation sites on the HA1 subunit of H5N1, providing insights into the changes of primary glycosylation sites, including 140 N, 156 N, and 170 N within the antigenic epitopes of HA1 protein. Multiple recombinant viruses were then generated based on HA genes of historical vaccine strains and deactivated for immunizing SPF chickens. Inactivated recombinant strains showed relatively closer antigenicity compared to which has identical N-glycosylation patterns. The N-glycosylation modification discrepancy highlights the inter-branch antigenic diversity of H5-subtype viruses in avian influenza and serves as a vital foundation for improving vaccination tactics.


Asunto(s)
Variación Antigénica , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Glicosilación , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Pollos/virología , Gripe Aviar/inmunología , Gripe Aviar/virología , Gripe Aviar/prevención & control , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Epítopos/inmunología , Epítopos/química , Antígenos Virales/inmunología , Antígenos Virales/genética
2.
Proc Natl Acad Sci U S A ; 120(27): e2300204120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364111

RESUMEN

Inflammasomes are one kind of important innate immune defense against viral and bacterial infections. Several inflammasome-forming sensors detect molecular patterns of invading pathogens and then trigger inflammasome activation and/or pyroptosis in infected cells, and viruses employ unique strategies to hijack or subvert inflammasome activation. Infection with herpesviruses induces the activation of diverse inflammasomes, including AIM2 and IFI16 inflammasomes; however, how Kaposi's sarcoma-associated herpesvirus (KSHV) counteracts inflammasome activation largely remains unclear. Here, we reveal that the KSHV ORF37-encoded SOX protein suppresses AIM2 inflammasome activation independent of its viral DNA exonuclease activity and host mRNA turnover. SOX interacts with the AIM2 HIN domain through the C-terminal Motif VII region and disrupts AIM2:dsDNA polymerization and ASC recruitment and oligomerization. The Y443A or F444A mutation of SOX abolishes the inhibition of AIM2 inflammasome without disrupting SOX nuclease activity, and a short SOX peptide is capable of inhibiting AIM2 inflammasome activation; consequently, infection with SOX-null, Y443A, or F444A Bac16 recombinant viruses results in robust inflammasome activation, suppressed lytic replication, and increased pyroptosis in human lymphatic endothelial cells in an AIM2-dependent manner. These results reveal that KSHV SOX suppresses AIM2 inflammasome activation to promote KSHV lytic replication and inhibit pyroptosis, representing a unique mechanism for evasion of inflammasome activation during KSHV lytic cycle.


Asunto(s)
Herpesvirus Humano 8 , Inflamasomas , Replicación Viral , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Endoteliales , Herpesvirus Humano 8/metabolismo , Inflamasomas/genética , Inflamasomas/metabolismo , Replicación Viral/fisiología , Piroptosis
3.
Emerg Infect Dis ; 28(8): 1703-1707, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35820171

RESUMEN

Although reports of human infection with influenza A(H5N6) increased in 2021, reports of similar H5N6 virus infection in poultry are few. We detected 10 avian influenza A(H5N6) clade 2.3.4.4b viruses in poultry from 4 provinces in China. The viruses showed strong immune-escape capacity and complex genetic reassortment, suggesting further transmission risk.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Aves , China/epidemiología , Humanos , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Filogenia , Aves de Corral , Virus Reordenados/genética
4.
Viruses ; 12(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963363

RESUMEN

Although research related to avian leukosis virus subgroup J (ALV-J) has lasted for more than a century, the systematic identification of host immune key factors against ALV-J infection has not been reported. In this study, we establish an infection model in which four-week-old SPF chickens are infected with ALV-J strain CHN06, after which the host immune response is detected. We found that the expression of two antiviral interferon-stimulated genes (ISGs) (Mx1 and IFIT5) were increased in ALV-J infected peripheral blood lymphocytes (PBL). A significant CD8+ T cell response induced by ALV-J appeared as early as seven days post-infection (DPI), and humoral immunity starting from 21 DPI differed greatly in the time scale of induction level. Meanwhile, the ALV-J viremia was significantly decreased before antibody production at 14 DPI, and eliminated at 21 DPI under a very low antibody level. The up-regulated CD8+ T cell in the thymus (14DPI) and PBL (7 DPI and 21 DPI) was detected, indicating that the thymus may provide the output of CD8+ T cell to PBL, which was related to virus clearance. Besides, up-regulated chemokine CXCLi1 at 7 DPI in PBL was observed, which may be related to the migration of the CD8+ T cell from the thymus to PBL. More importantly, the CD8 high+ T cell response of the CD8αß phenotype may produce granzyme K, NK lysin, or IFN-γ for clearing viruses. These findings provide novel insights and direction for developing effective ALV-J vaccines.


Asunto(s)
Virus de la Leucosis Aviar/inmunología , Leucosis Aviar/inmunología , Interacciones Microbiota-Huesped/inmunología , Interferones/inmunología , Leucocitos Mononucleares/virología , Animales , Anticuerpos Antivirales/sangre , Leucosis Aviar/virología , Virus de la Leucosis Aviar/clasificación , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL1/inmunología , Pollos/inmunología , Pollos/virología , Inmunidad Humoral , Leucocitos Mononucleares/inmunología , Proteínas de Resistencia a Mixovirus/genética , Organismos Libres de Patógenos Específicos , Viremia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA