Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Biochem ; 122(3-4): 472-484, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33399232

RESUMEN

HnRNPA2/B1 is highly expressed in many tumors. However, the role of hnRNPA2/B1 in breast cancer is not clear. In this study, we found the proliferation rate was decreased after knockout of hnRNPA2/B1 by CRISPR-CAS9 in MCF-7 cells, as demonstrated by the reduced expression of CDK4 and p-AKT, and the increased expression of P27. Besides this, the western blot results showed that knockout of hnRNPA2/B1 increased the rate of apoptosis and declined autophagy. By in vivo assay, we found that knockout of hnRNPA2/B1 suppressed tumor growth in a xenograft mouse model. Immunohistochemical staining results confirmed knockout of hnRNPA2/B1 impaired tumor angiogenesis, as illustrated by downregulated expression of VEGF-A. Besides this, interacting proteins with hnRNPA2/B1 were identified by mass spectrometry and the PPI network was constructed. GO analysis suggests that the Interacting proteins are mainly enriched in the Wnt signaling pathway, tumor necrosis factor-mediated signaling pathway, translation, and so on. We then identified hnRNPA2/B1 interacted with signal transducer and activator of transcription 3 (STAT3), as supported by the colocalization of hnRNPA2/B1 and STAT3. Meanwhile, knockout of hnRNPA2/B1 inhibited the phosphorylation of STAT3. Collectively, our results demonstrate that hnRNPA2/B1 promotes tumor cell growth in vitro and in vivo by activating the STAT3 pathway, regulating apoptosis and autophagy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Inmunohistoquímica , Células MCF-7 , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología
2.
J Cell Biochem ; 118(12): 4697-4707, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28513872

RESUMEN

Reactive oxygen species (ROS) play both deleterious and beneficial roles in cancer cells. Nucleophosmin (NPM) is heavily implicated in cancers of diverse origins, being its gene over-expression in solid tumors or frequent mutations in hematological malignancies. However, the role and regulatory mechanism of NPM in oxidative stress are unclear. Here, we found that NPM regulated the expression of peroxiredoxin 6 (PRDX6), a member of thiol-specific antioxidant protein family, consequently affected the level and distribution of ROS. Our data indicated that NPM knockdown caused the increase of ROS and its relocation from cytoplasm to nucleoplasm. In contrast, overexpression or cytoplasmic localization of NPM upregulated PRDX6, and decreased ROS. In addition, NPM knockdown decreased peroxiredoxin family proteins, including PRDX1, PRDX4, and PRDX6. Co-immunoprecipitation further confirmed the interaction between PRDX6 and NPM. Moreover, NSC348884, an inhibitor specifically targeting NPM oligomerization, decreased PRDX6 and significantly upregulated ROS. These observations demonstrated that the expression and localization of NPM affected the homeostatic balance of oxidative stress in tumor cells via PRDX6 protein. The regulation axis of NPM/PRDX/ROS may provide a novel therapeutic target for cancer treatment. J. Cell. Biochem. 118: 4697-4707, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Antioxidantes/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Estrés Oxidativo , Peroxiredoxina VI/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Humanos , Indoles/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/genética , Nucleofosmina , Peroxiredoxina VI/antagonistas & inhibidores , Peroxiredoxina VI/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA