RESUMEN
Recent genome-wide association studies have identified many loci associated with type 2 diabetes mellitus (T2DM), hyperuricemia, and obesity in various ethnic populations. However, quantitative traits have been less well investigated in Han Chinese T2DM populations. We investigated the association between candidate gene single nucleotide polymorphisms (SNPs) and metabolic syndrome-related quantitative traits in Han Chinese T2DM subjects. Unrelated Han Chinese T2DM patients (1975) were recruited. Eighty-six SNPs were genotyped and tested for association with quantitative traits including lipid profiles, blood pressure, body mass index (BMI), serum uric acid (SUA), glycated hemoglobin (HbA1c), plasma glucose [fasting plasma glucose (FPG)], plasma glucose 120 min post-OGTT (P2PG; OGTT = oral glucose tolerance test), and insulin resistance-related traits. We found that CAMTA1, ABI2, VHL, KAT2B, PKHD1, ESR1, TOX, SLC30A8, SFI1, and MYH9 polymorphisms were associated with HbA1c, FPG, and/or P2PG; GCK, HHEX, TCF7L2, KCNQ1, and TBX5 polymorphisms were associated with insulin resistance-related traits; ABCG2, SLC2A9, and PKHD1 polymorphisms were associated with SUA; CAMTA1, VHL, KAT2B, PON1, NUB1, SLITRK5, SMAD3, FTO, FANCA, and PCSK2 polymorphisms were associated with blood lipid traits; CAMTA1, SPAG16, TOX, KCNQ1, ACACB, and MYH9 polymorphisms were associated with blood pressure; and UBE2E3, SPAG16, SLC2A9, CDKAL1, CDKN2A/B, TCF7L2, SMAD3, and PNPLA3 polymorphisms were associated with BMI (all P values <0.05). Some of the candidate genes were associated with metabolic and anthropometric traits in T2DM in Han Chinese. Although none of these associations reached genome-wide significance (P < 5 x 10(-8)), genes and loci identified in this study are worthy of further replication and investigation.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Carácter Cuantitativo Heredable , Anciano , Metabolismo Energético/genética , Femenino , Humanos , Resistencia a la Insulina/genética , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Factores de RiesgoRESUMEN
Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, and synthetic rubber. Previous epidemiological investigations and animal studies have confirmed that ACN affects the lymphocytes and spleen. However, the immune toxicity mechanism is unknown. Lipid rafts are cell membrane structures that are rich in cholesterol and involved in cell signal transduction. The B cell lymophoma-10 (Bcl10) protein is a joint protein that is important in lymphocyte development and signal pathways. This study was conducted to examine the in vitro effects of ACN. We separated lipid rafts, and analyzed Bcl10 protein and caveolin. Western blotting was used to detect mitogen-activated protein kinase (MAPK) and phosphorylated MAPK levels. The results indicated that with increasing ACN concentration, the total amount of Bcl10 remained stable, but was concentrated mainly in part 4 to part 11 in electrophoretic band district which is high density in gradient centrifugation. Caveolin-1 was evaluated as a lipid raft marker protein; caveolin-1 content and position were relatively unchanged. Western blotting showed that in a certain range, MAPK protein was secreted at a higher level. At some ACN exposure levels, MAPK protein secretion was significantly decreased compared to the control group (P < 0.05). These results indicate that ACN can cause immune toxicity by damaging lipid raft structures, causing Bcl10 protein and lipid raft separation and restraining Ras-Raf-MAPK-extracellular signal-regulated kinase signaling pathways.
Asunto(s)
Acrilonitrilo/farmacología , Linfocitos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Quinasas raf/metabolismo , Proteínas ras/metabolismo , Western Blotting , Humanos , Células Jurkat , Linfocitos/metabolismoRESUMEN
ATP-binding cassette super family (ABC) proteins are considered key to oncology and pharmacology studies. We examined the effect of benzene on ABC pump protein levels in C57BL/6 mouse bone marrow mononuclear cells. After a 2-week gavage (200 mg/kg, 5 days per week), the number of peripheral leukocytes, lymphocytes and basophils dropped significantly; there was also a significant decrease in MDR1 and MRP1 gene expression. A significant reduction in expression of P-gp was found; however, there was no significant decrease in the expression of MRP1 and NF-κB p65. We conclude that regulation of membrane efflux transport protein could be a factor in benzene hematotoxicity.