Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(9): 313, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162905

RESUMEN

CONTEXT: Myocardial infarction is one of the major health challenges. It is of great significance to develop potential delivery carriers for new anti-myocardial infarction drugs. In this paper, based on first-principles calculations, monolayer WS2 with excellent photoelectric properties was verified as a carrier for the anti-myocardial infarction drug amiodarone (AMD). Studies have shown that the WS2-adsorbed AMD system (WS2@AMD) maintains structural stability and produces an adsorption energy of-2.12 eV. Mulliken charge analysis shows that electrons are transferred from WS2 atoms to AMD atoms. Among them, C, N and O obtained the maximum values of 0.51,0.37 and 0.56 e electrons, respectively, while H and I lost the maximum values of 0.32 and 0.24 e electrons, respectively. The optical response of WS2 adsorbed AMD system is similar to that of WS2. The light absorption coefficients of the two materials in the near ultraviolet region and the visible region can reach the order of 105 cm-1 and 104 cm-1, and the strain makes the light absorption peak red-shifted. The feasibility of temperature-controlled release mechanism of WS2 as AMD carrier was discussed. This theoretical work helps to improve the performance of two-dimensional nanomaterials and make them better as drug delivery carriers to improve the therapeutic effect of myocardial infarction. These results indicate that the WS2 monolayer has potential applications in the development of drug delivery carriers. METHODS: In this study, based on first-principles calculations, the CASTEP simulation software package was used to study the structure and properties of materials. The interaction between electrons and ions is considered by using Ultrasoft pseudopotentials. In order to eliminate the spurious interaction between adjacent structures caused by periodic calculations, a vacuum space no less than 18 Å is placed in the vertical direction if necessary. Different functions may produce different density functional calculation results. Due to the low sensitivity of the crystal structure to the calculation details, the PBE functional under the generalized gradient approximation (GGA) was initially used for structural optimization, and the energy cutoff value was set to 500 eV. Grimme 's dispersion correction was used to make the results more accurate. The Brillouin zone (BZ) is sampled by a 7 × 7 × 1 K-point grid to ensure the reliability of the original lattice calculation. The lattice vector and atomic coordinates are relaxed, and the tolerance of each atom is less than 0.01 eV/Å. The energy tolerance at the atomic position is less than 10-7 eV/atom. When calculating the band gap, the HSE06 hybrid functional is used to modify the optimized structure of the PBE functional to obtain more accurate results. Spin-polarized DFT calculations were performed to calculate the electronic structure.


Asunto(s)
Portadores de Fármacos , Infarto del Miocardio , Infarto del Miocardio/tratamiento farmacológico , Portadores de Fármacos/química , Modelos Moleculares , Compuestos de Tungsteno/química , Adsorción , Sistemas de Liberación de Medicamentos
2.
Biomed Pharmacother ; 169: 115852, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37944441

RESUMEN

Type 2 diabetes mellitus (T2DM) is a prevalent, chronic metabolic disease. Sodium-glucose cotransporter-2 (SGLT2) inhibitors and aerobic exercise (AE) have shown promise in mitigating insulin resistance (IR) and T2DM. This study investigated the effects of dapagliflozin (Dapa) monotherapy and combined AE on mitochondrial quality control (MQC) in skeletal muscle and IR in T2DM rats. T2DM rats, induced by a high-fat diet/streptozotocin model, were randomly assigned to the following groups: T2DM+vehicle group (DMV), T2DM rats treated with Dapa (DMDa, 10 mg/kg/d), T2DM rats subjected to combined Dapa treatment and AE (DMDa+AE), and the standard control group (CON). Blood and skeletal muscle samples were collected after 6 weeks of intragastric administration and treadmill exercise. The results showed that DMDa monotherapy could reduce the accumulation of white adipose tissue and skeletal muscle lipid droplets and improve HOMA-IR. While the combined AE led to further reductions in subcutaneous white adipose tissue and fasting glucose levels, it did not confer additional benefits in terms of HOMA-IR. Furthermore, Dapa monotherapy enhanced skeletal muscle mitochondrial biogenesis (PGC-1α, NRF1, TFAM, and COX IV), mitochondrial dynamics (OPA1, DRP1, and MFN2), and mitophagy (PGAM5 and PINK1) related protein levels. Nevertheless, the combination of Dapa with AE treatment did not yield an additive effect. In conclusion, this study highlights the potential of SGLT2 inhibitors, specifically Dapa, in ameliorating IR and maintaining MQC in skeletal muscle in rats with T2DM. However, combined AE did not produce an additive effect, indicating the need for further research.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratas , Animales , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Glucemia/metabolismo , Músculo Esquelético
4.
Diabetol Metab Syndr ; 15(1): 154, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438792

RESUMEN

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are commonly used in the management of type 2 diabetes mellitus (T2DM) and have been found to worsen the reduction of skeletal muscle mass in individuals with T2DM. This study aims to examine the potential of exercise in mitigating the skeletal muscle atrophy induced by SGLT2i treatment. METHODS: A rat model of T2DM (40 male Sprague-Dawley rats; T2DM induced by a combination of high-fat diet and streptozotocin) was used to examine the effects of six-week treatment with Dapagliflozin (DAPA, SGLT2i) in combination with either aerobic exercise (AE) or resistance training (RT) on skeletal muscle. T2DM-eligible rats were randomized into the T2DM control group (CON, n = 6), DAPA treatment group (DAPA, n = 6), DAPA combined with aerobic exercise intervention group (DAPA + AE, n = 6), and DAPA combined with resistance training intervention group (DAPA + RT, n = 6). To assess the morphological changes in skeletal muscle, myosin ATPase and HE staining were performed. mRNA expression levels of Atrogin-1, MuRF1, and Myostatin were determined using quantitative PCR. Furthermore, protein expression levels of AKT, p70S6K, mTOR, FoXO1/3A, NF-κB, and MuRF1 were examined through western blotting. RESULTS: Both the administration of DAPA alone and the combined exercise intervention with DAPA resulted in significant reductions in blood glucose levels and body weight in rats. However, DAPA alone administration led to a decrease in skeletal muscle mass, whereas RT significantly increased skeletal muscle mass and muscle fiber cross-sectional area. The DAPA + RT group exhibited notable increases in both total protein levels and phosphorylation levels of AKT and p70S6K in skeletal muscle. Moreover, the DAPA, DAPA + AE, and DAPA + RT groups demonstrated downregulation of protein expression (FoXO1/3A) and mRNA levels (Atrogin-1, MuRF1, and Myostatin) associated with muscle atrophy. CONCLUSIONS: Our findings provide support for the notion that dapagliflozin may induce skeletal muscle atrophy through mechanisms unrelated to protein metabolism impairment in skeletal muscle, as it does not hinder protein metabolic pathways while reduces muscle atrophy-related genes. Additionally, our observations reveal that RT proves more effective than AE in enhancing skeletal muscle mass and muscle fiber cross-sectional area in rats with T2DM by stimulating protein anabolism within the skeletal muscle.

5.
Microbiol Spectr ; 11(3): e0062023, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039640

RESUMEN

Aminoglycoside-modifying enzymes are among the most important mechanisms of resistance to aminoglycoside antibiotics, typically conferring high-level resistance by enzymatic drug inactivation. Previously, we isolated a multidrug-resistant Brucella intermedia strain ZJ499 from a cancer patient, and whole-genome sequencing revealed several putative novel aminoglycoside-modifying enzyme genes in this strain. Here, we report the characterization of one of them that encodes an intrinsic, chromosomal aminoglycoside nucleotidyltransferase designated ANT(9)-Ic, which shares only 33.05% to 47.44% amino acid identity with the most closely related ANT(9)-I enzymes. When expressed in Escherichia coli, ANT(9)-Ic conferred resistance only to spectinomycin and not to any other aminoglycosides tested, indicating a substrate profile typical of ANT(9)-I enzymes. Consistent with this, deletion of ant(9)-Ic in ZJ499 resulted in a specific and significant decrease in MIC of spectinomycin. Furthermore, the purified ANT(9)-Ic protein showed stringent substrate specificity for spectinomycin with a Km value of 44.83 µM and a kcat/Km of 2.8 × 104 M-1 s-1, echoing the above observations of susceptibility testing. In addition, comparative genomic analysis revealed that the genetic context of ant(9)-Ic was conserved in Brucella, with no mobile genetic elements found within its 20-kb surrounding region. Overall, our results demonstrate that ANT(9)-Ic is a novel member of the ANT(9)-I lineage, contributing to the intrinsic spectinomycin resistance of ZJ499. IMPORTANCE The emergence, evolution, and worldwide spread of antibiotic resistance present a significant global public health crisis. For aminoglycoside antibiotics, enzymatic drug modification is the most common mechanism of resistance. We identify a novel chromosomal aminoglycoside nucleotidyltransferase from B. intermedia, called ANT(9)-Ic, which shares the highest identity (47.44%) with the previously known ANT(9)-Ia and plays an important role in spectinomycin resistance of the host strain. Analysis of the genetic environment and origin of ant(9)-Ic shows that the gene and its surrounding region are widely conserved in Brucella, and no mobile elements are detected, indicating that ANT(9)-Ic may be broadly important in the natural resistance to spectinomycin of Brucella species.


Asunto(s)
Aminoglicósidos , Nucleotidiltransferasas , Aminoglicósidos/farmacología , Aminoglicósidos/química , Aminoglicósidos/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Espectinomicina , Antibacterianos/farmacología , Antibacterianos/metabolismo , Farmacorresistencia Microbiana , Escherichia coli/metabolismo , Farmacorresistencia Bacteriana/genética
6.
Front Microbiol ; 13: 990736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504772

RESUMEN

Introduction: Lelliottia amnigena, a bacterium usually isolated from natural environments, may cause human infections and has been suggested to be naturally resistant to second- and third-generation cephalosporins. Methods: In this study, we determined the whole-genome sequence of an isolate, L. Amnigena P13, isolated from animal farm sewage. On the basis of genome sequence analysis, susceptibility testing, molecular cloning, and enzyme kinetic parameter analysis, we identified a novel chromosome-encoded AmpC ß-lactamase, LAQ-1. Results and Discussion: bla LAQ-1 is resistant to penicillin G, ampicillin, and several first- to fourth-generation cephalosporins, such as cefazolin, cefoxitin and cefepime. The MIC levels of some ß-lactams, such as cefoxitin, cefepime, aztreonam and cefazolin, for the recombinant clone (pUCP24-bla LAQ-1/DH5α) increased by approximately 4- to 64-fold compared with those of the control strain (pUCP24/DH5α). The kinetic properties of LAQ-1, with the highest catalytic activity observed toward piperacillin, were basically the same as those of typical class C ß-lactamases, and avibactam had a strong inhibitory effect on its hydrolytic activity. The genetic background of bla LAQ-1 was relatively conserved, and no mobile genetic element (MGE) was found around it. The plasmid pP13-67 of L. amnigena P13 harbored 12 resistance genes [qnrS1, aph(6)-Id, aadA2, sul1, sul2, bla TEM-1, qacEΔ1, dfrA12, tetA and floR] related to different mobile genetic elements within an ~22 kb multidrug resistance region. The multidrug resistance region shared the highest nucleotide sequence similarities with those of the chromosomes or plasmids of different bacterial species, indicating the possibility of horizontal transfer of these resistance genes among different bacterial species.

7.
Front Microbiol ; 12: 773697, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095793

RESUMEN

Campylobacter jejuni (C. jejuni) is one of the major pathogens contributing to the enteritis in humans. Infection can lead to numerous complications, including but not limited to Guillain-Barre syndrome, reactive arthritis, and Reiter's syndrome. Over the past two decades, joint efforts have been made toward developing a proper strategy of limiting the transmission of C. jejuni to humans. Nevertheless, except for biosecurity measures, no available vaccine has been developed so far. Judging from the research findings, Omp18, AhpC outer membrane protein, and FlgH flagellin subunits of C. jejuni could be adopted as surface protein antigens of C. jejuni for screening dominant epitope thanks to their strong antigenicity, expression of varying strains, and conservative sequence. In this study, bioinformatics technology was adopted to analyze the T-B antigenic epitopes of Omp18, AhpC, and FlgH in C. jejuni strain NCTC11168. Both ELISA and Western Blot methods were adopted to screen the dominant T-B combined epitope. GGS (GGCGGTAGC) sequence was adopted to connect the dominant T-B combined epitope peptides and to construct the prokaryotic expression system of tandem repeats of antigenic epitope peptides. The mouse infection model was adopted to assess the immunoprotective effect imposed by the trivalent T-B combined with antigen epitope peptide based on Omp18/AhpC/FlgH. In this study, a tandem epitope AhpC-2/Omp18-1/FlgH-1 was developed, which was composed of three epitopes and could effectively enhance the stability and antigenicity of the epitope while preserving its structure. The immunization of BALB/c mice with a tandem epitope could induce protective immunity accompanied by the generation of IgG2a antibody response through the in vitro synthesis of IFN-γ cytokines. Judging from the results of immune protection experiments, the colonization of C. jejuni declined to a significant extent, and it was expected that AhpC-2/Omp18-1/FlgH-1 could be adopted as a candidate antigen for genetic engineering vaccine of C. jejuni MAP.

8.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 33(3): 197-201, 2017 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-29931932

RESUMEN

OBJECTIVE: To analyze the expression and its promoter methylation of chemokine CXC ligand 14 (CXCL14) in peripheral blood mononuclear cells (PBMCs) from patients with systemic lupus erythematosus (SLE). METHODS: The RNAs of PBMCs from 28 SLE patients and 20 healthy controls were isolated and reversely transcribed into cDNAs. Using GAPDH as the internal reference, the levels of CXCL14 ex-pression were detected by real-time polymerase chain reaction (PCR). The correlation between CXCL14 expression and the clinic pathological fe atures of SLE were further analyzed. DNA methylation was analyzed by bisulfite sequencing PCR (BSP). RESULTS: Our data indicated that the level of CXCL14 in the PBMC of SLE patients was statistically lower than that in healthy controls (P < 0.05). Further analysis showed that CXCL14 expression was negatively correlated with anti-Sj gren syndrome B antibody(anti-SSB antibody, P < 0.01) and albuminuria(P < 0.05). However, CXCL14 expression was not significantly correlated with the indexes of SLE activity, renal damage, the level of anti-ds-DNA antibodies, complement C3 and C-reactive protein. In addition, we further demonstrated that the CXCL14 promoter hypermethylation expres-sion was significant higher than healthy controls. CONCLUSIONS: Down-regulated of CXCL14 expression in PBMC maybe involved in the occur-rence or development of SLE disease. The loss of CXCL14 expression was regulated by promoter hypermethylation.


Asunto(s)
Quimiocinas CXC/genética , Metilación de ADN , Lupus Eritematoso Sistémico/genética , Regiones Promotoras Genéticas , Estudios de Casos y Controles , Humanos , Leucocitos Mononucleares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA