Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 15(8): 12535-12566, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34279074

RESUMEN

Alternative water resources (seawater, brackish water, atmospheric water, sewage, etc.) can be converted into clean freshwater via high-efficiency, energy-saving, and cost-effective methods to cope with the global water crisis. Herein, we provide a comprehensive and systematic overview of various solar-powered technologies for alternative water utilization (i.e., "sunlight-energy-water nexus"), including solar-thermal interface desalination (STID), solar-thermal membrane desalination (STMD), solar-driven electrochemical desalination (SED), and solar-thermal atmospheric water harvesting (ST-AWH). Three strategies have been proposed for improving the evaporation rate of STID systems above the theoretical limit and designing all-weather or all-day operating STID systems by analyzing the energy transfer of the evaporation and condensation processes caused by solar-thermal conversion. This review also introduces the fundamental principles and current research hotspots of two other solar-driven seawater or brackish water desalination technologies (STMD and SED) in detail. In addition, we also cover ST-AWH and other solar-powered technologies in terms of technology design, materials evolution, device assembly, etc. Finally, we summarize the content of this comprehensive review and discuss the challenges and future outlook of different types of solar-powered alternative water utilization technologies.

2.
Front Chem ; 8: 575350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330363

RESUMEN

Capacitive deionization (CDI) is a promising electrochemical water treatment technology. Development of new electrode materials with higher performance is key to improve the desalination efficiency of CDI. Carbon nanomaterials derived from metal-organic frameworks (MOFs) have attracted wide attention for their porous nanostructures and large specific surface areas. The desalination capacity and cycling stability of MOF-derived carbons (MOFCs) have been greatly improved by means of morphology control, heteroatom doping, Faradaic material modification, etc. Despite progress has been made to improve their CDI performance, quite a lot of MOFCs are too costly to be applied in a large scale. It remains crucial to develop MOFCs with both high desalination efficiency and low cost. In this review, we summarized three modification methods of MOFCs, namely morphology control, heteroatom doping, and Faradaic material doping, and put forward some constructive advice on how to enhance the desalination performance of MOFCs effectively at a low cost. We hope that more efforts could be devoted to the industrialization of MOFCs for CDI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA