Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Signal ; 122: 111345, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134249

RESUMEN

In tumors, the rapid proliferation of cells and the imperfect blood supply system lead to hypoxia, which can regulate the adaptation of tumor cells to the hypoxic environment through hypoxia-inducible factor-1α (HIF-1α) and promote tumor development in multiple ways. Recent studies have found that epithelial-mesenchymal transition (EMT) and ferroptosis play important roles in the progression of tumor cells. The activation of HIF-1α is considered a key factor in inducing EMT in tumor cells. When HIF-1α is activated, it can regulate EMT-related genes, causing tumor cells to gradually lose their epithelial characteristics and acquire more invasive mesenchymal traits. The occurrence of EMT allows tumor cells to better adapt to changes in the surrounding tissue, enhancing their migratory and invasive capabilities, thus promoting tumor progression. At the same time, HIF-1α also plays a crucial regulatory role in ferroptosis in tumor cells. In a hypoxic environment, HIF-1α may affect processes such as iron metabolism and oxidative stress responses, inducing ferroptosis in tumor cells. This article briefly reviews the dual role of HIF-1α in EMT and ferroptosis in tumor cells, helping to gain a deeper understanding of the regulatory pathways of HIF-1α in the development of tumor cells, providing a new perspective for understanding the pathogenesis of tumors. The regulation of HIF-1α may become an important strategy for future tumor therapy.


Asunto(s)
Transición Epitelial-Mesenquimal , Ferroptosis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales
2.
Water Res ; 265: 122248, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142071

RESUMEN

Vanadium (V) occurs in environment naturally and anthropogenically, but little has been understood about its environmental behavior in groundwater aquifer with sediments. This study investigated the pentavalent V [V(V)] transport and transformation under the influence of different sediment components (minerals, organic matter, and microorganisms) through column experiments. All these components played pivotal roles in V immobilization. The synergistic effects of sediment components enhanced V retention compared to individual component. Mineral components, particularly those containing carbonates and metal oxides, predominantly influenced V(V) transport as indicated by XRD analysis. Organic matter, especially under low pH conditions, induced particle aggregation, thereby inhibiting the transport of V(V). The V K-edge X-ray absorption near-edge structure spectroscopy revealed the formation of tetravalent V[V(IV)] in treatments involving organic matter and microorganisms. Notably, organic matter exhibited the capability to directly reduce V(V). The introduction of microorganisms restricted V(V) transfer. V(V) reducing genera (e.g., Brevundimonas, Arenimonas, Xanthobacter) were detected, achieving V(V) reduction to insoluble V(IV). V(V) bioreduction was improved by minerals that promote microbial metabolism with enhanced electron transfer, or by organic matter that increases levels of intracellular nicotinamide adenine dinucleotide and extracellular polymeric substances. This study specifies the contributions of different sediment components to the transportation and transformation of V, deepening our understanding of V biogeochemistry in groundwater aquifer.


Asunto(s)
Sedimentos Geológicos , Agua Subterránea , Vanadio , Agua Subterránea/química , Sedimentos Geológicos/química , Vanadio/química , Contaminantes Químicos del Agua
3.
Cancer Med ; 13(3): e6935, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38230764

RESUMEN

BACKGROUND AND AIMS: The mortality rate associated with malignant tumors remains high and there is a lack of effective diagnostic and tumor progression markers. Neutrophil extracellular traps (NETs) can promote tumor-associated thrombosis, invasive metastasis, and inflammatory responses, but there is a lack of research on the value of measuring NETs in the peripheral blood of patients with malignancies. METHODS: We included 263 patients with malignancies (55 gliomas, 101 ovarian, 64 colorectal, and 43 lung cancers) and 75 healthy controls in this study. We compared the levels of citrullinated histone H3 (citH3), cell-free DNA (cfDNA), and systemic inflammation-related parameters, including neutrophils, lymphocytes, monocytes, platelets, neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio, systemic immune inflammation index, and systemic inflammation response index. We assessed the value of changes in NETs in peripheral blood to determine the diagnosis, venous thromboembolism, clinical staging, and systemic inflammatory response in patients with malignancy. RESULTS: The levels of citH3 and cfDNA in peripheral blood can distinguish between healthy controls and tumor patients. The levels of citH3 and cfDNA before clinical intervention did not predict the risk of combined venous thromboembolism in oncology patients in the short-term after clinical intervention. The levels of citH3, cfDNA, and systemic inflammation-related parameters in the peripheral blood of tumor patients increased with the clinical stage. There was a correlation between cfDNA levels in peripheral blood and systemic inflammation-related parameters in tumor patients, and this correlation was more significant in patients with advanced tumors. CONCLUSIONS: Changes in NETs in the peripheral blood differ between healthy controls and patients with malignant tumors. NETs may be involved in tumor-induced systemic inflammatory responses through interaction with circulating inflammatory cells, thus promoting tumor progression. NETs may be used as markers to assist in the diagnosis and progression of tumor malignancy.


Asunto(s)
Ácidos Nucleicos Libres de Células , Trampas Extracelulares , Neoplasias Pulmonares , Tromboembolia Venosa , Humanos , Neutrófilos , Histonas , Biomarcadores de Tumor , Inflamación/diagnóstico
4.
J Hazard Mater ; 451: 131055, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36870126

RESUMEN

The widely applied aromatic nitration in modern industry leads to toxic p-nitrophenol (PNP) in environment. Exploring its efficient degradation routes is of great interests. In this study, a novel four-step sequential modification procedure was developed to increase the specific surface area, functional group, hydrophilicity, and conductivity of carbon felt (CF). The implementation of the modified CF promoted reductive PNP biodegradation, attaining 95.2 ± 0.8% of removal efficiency with less accumulation of highly toxic organic intermediates (e.g., p-aminophenol), compared to carrier-free and CF-packed biosystems. The constructed anaerobic-aerobic process with modified CF in 219-d continuous operation achieved further removal of carbon and nitrogen containing intermediates and partial mineralization of PNP. The modified CF promoted the secretion of extracellular polymeric substances (EPS) and cytochrome c (Cyt c), which were essential components to facilitate direct interspecies electron transfer (DIET). Synergistic relationship was deduced that glucose was converted into volatile fatty acids by fermenters (e.g., Longilinea and Syntrophobacter), which donated electrons to the PNP degraders (e.g., Bacteroidetes_vadinHA17) through DIET channels (CF, Cyt c, EPS) to complete PNP removal. This study proposes a novel strategy using engineered conductive material to enhance the DIET process for efficient and sustainable PNP bioremediation.


Asunto(s)
Carbono , Electrones , Fibra de Carbono , Biodegradación Ambiental , Nitrofenoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA