Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Geobiology ; 15(2): 225-239, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27671809

RESUMEN

For a large part of earth's history, cyanobacterial mats thrived in low-oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment-water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment-mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low-oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic-rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low-throughput or shotgun metagenomic approaches, our high-throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate-reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.


Asunto(s)
Biota , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Agua Subterránea , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , América del Norte , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
2.
Geobiology ; 10(3): 250-67, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22404795

RESUMEN

Cyanobacteria are renowned as the mediators of Earth's oxygenation. However, little is known about the cyanobacterial communities that flourished under the low-O(2) conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low-O(2) conditions. Here, venting groundwater rich in sulfate and low in O(2) supports a unique benthic ecosystem of purple-colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O(2), suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, (14)C-bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low-diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale, for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria. Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low-O(2) cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.


Asunto(s)
Biota , Cianobacterias/clasificación , Cianobacterias/aislamiento & purificación , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Metagenómica , Oxígeno/metabolismo , Radioisótopos de Carbono/metabolismo , Análisis por Conglomerados , Cianobacterias/genética , Cianobacterias/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Metabolismo Energético , Marcaje Isotópico , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA