Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(6): 1981-1987, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38291719

RESUMEN

Electronic flicker noise is recognized as the most abundant noise in electronic conductors, either as an unwanted contribution or as a source of information on electron transport mechanisms and material properties. This noise is typically observed when a voltage difference is applied across a conductor or current is flowing through it. Here, we identify an unknown type of electronic flicker noise that is found when a temperature difference is applied across a nanoscale conductor in the absence of a net charge current or voltage bias. The revealed delta-T flicker noise is demonstrated in molecular junctions and characterized using quantum transport theory. This noise is expected to arise in nanoscale electronic conductors subjected to unintentional temperature gradients, where it can be a performance-limiting factor. On the positive side, delta-T flicker noise can detect temperature differences across a large variety of nanoscale conductors, down to atomic-scale junctions with no special setup requirements.

2.
Phys Rev Lett ; 128(23): 237701, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749205

RESUMEN

We report on a quantum form of electronic flicker noise in nanoscale conductors that contains valuable information on quantum transport. This noise is experimentally identified in atomic and molecular junctions and theoretically analyzed by considering quantum interference due to fluctuating scatterers. Using conductance, shot-noise, and flicker-noise measurements, we show that the revealed quantum flicker noise uniquely depends on the distribution of transmission channels, a key characteristic of quantum conductors. This dependence opens the door for the application of flicker noise as a diagnostic probe for fundamental properties of quantum conductors and many-body quantum effects, a role that up to now has been performed by the experimentally less-accessible shot noise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA