Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928339

RESUMEN

Receptors of cytokines are major regulators of the immune response. In this work, we have discovered two new ligands that can activate the TNFR1 (tumor necrosis factor receptor 1) receptor. Earlier, we found that the peptide of the Tag (PGLYRP1) protein designated 17.1 can interact with the TNFR1 receptor. Here, we have found that the Mts1 (S100A4) protein interacts with this peptide with a high affinity (Kd = 1.28 × 10-8 M), and that this complex is cytotoxic to cancer cells that have the TNFR1 receptor on their surface. This complex induces both apoptosis and necroptosis in cancer cells with the involvement of mitochondria and lysosomes in cell death signal transduction. Moreover, we have succeeded in locating the Mts1 fragment that is responsible for protein-peptide interaction, which highly specifically interacts with the Tag7 protein (Kd = 2.96 nM). The isolated Mts1 peptide M7 also forms a complex with 17.1, and this peptide-peptide complex also induces the TNFR1 receptor-dependent cell death. Molecular docking and molecular dynamics experiments show the amino acids involved in peptide binding and that may be used for peptidomimetics' development. Thus, two new cytotoxic complexes were created that were able to induce the death of tumor cells via the TNFR1 receptor. These results may be used in therapy for both cancer and autoimmune diseases.


Asunto(s)
Apoptosis , Receptores Tipo I de Factores de Necrosis Tumoral , Humanos , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/química , Apoptosis/efectos de los fármacos , Unión Proteica , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Simulación de Dinámica Molecular , Transducción de Señal/efectos de los fármacos , Necroptosis/efectos de los fármacos , Oligopéptidos/química , Oligopéptidos/farmacología , Oligopéptidos/metabolismo , Citocinas
2.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35455478

RESUMEN

Telomeres serve a critical function in cell replication and proliferation at every stage of the cell cycle. Telomerase is a ribonucleoprotein, responsible for maintaining the telomere length and chromosomal integrity of frequently dividing cells. Although it is silenced in most human somatic cells, telomere restoration occurs in cancer cells because of telomerase activation or alternative telomere lengthening. The telomerase enzyme is a universal anticancer target that is expressed in 85-95% of cancers. BIBR1532 is a selective non-nucleoside potent telomerase inhibitor that acts by direct noncompetitive inhibition. Relying on its structural features, three different series were designed, and 30 novel compounds were synthesized and biologically evaluated as telomerase inhibitors using a telomeric repeat amplification protocol (TRAP) assay. Target compounds 29a, 36b, and 39b reported the greatest inhibitory effect on telomerase enzyme with IC50 values of 1.7, 0.3, and 2.0 µM, respectively, while BIBR1532 displayed IC50 = 0.2 µM. Compounds 29a, 36b, and 39b were subsequently tested using a living-cell TRAP assay and were able to penetrate the cell membrane and inhibit telomerase inside living cancer cells. Compound 36b was tested for cytotoxicity against 60 cancer cell lines using the NCI (USA) procedure, and the % growth was minimally impacted, indicating telomerase enzyme selectivity. To investigate the interaction of compound 36b with the telomerase allosteric binding site, molecular docking and molecular dynamics simulations were used.

4.
Steroids ; 154: 108528, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31678135

RESUMEN

Abiraterone D4A metabolite, the product of 3ß-hydroxysteroid dehydrogenase activity toward abiraterone, may serve as a potential antitumor agent for the treatment of prostate cancer. The main adverse effect of abiraterone is the disruption of corticosteroid biosynthesis, and the more pharmacologically active abiraterone D4A metabolite may have the same issues. We therefore estimated the inhibiting impact of the abiraterone D4A metabolite on one of the key corticosteroidogenic enzymes - human steroid 21-monooxygenase (CYP21A2). Molecular docking of D4A into the active site of CYP21A2 has been predicted to be similar to abiraterone binding with the enzyme. Abiraterone D4A metabolite, similar to abiraterone, induces type II spectral changes of CYP21A2. The spectral dissociation constant for the abiraterone D4A metabolite-CYP21A2 complex was calculated as 3.4 ±â€¯0.5 µM. Abiraterone D4A metabolite demonstrates competitive/mixed type CYP21A2 inhibition with an inhibitory constant of 1.8 ±â€¯0.8 µM, as obtained by Dixon plot. These results make it possible to predict the adverse effects of the new perspective candidate compound for antitumor therapy.


Asunto(s)
Androstenos/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Esteroide 21-Hidroxilasa/antagonistas & inhibidores , Androstenos/química , Inhibidores Enzimáticos del Citocromo P-450/química , Relación Dosis-Respuesta a Droga , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Esteroide 21-Hidroxilasa/metabolismo , Relación Estructura-Actividad
5.
Fundam Clin Pharmacol ; 34(1): 120-130, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31286572

RESUMEN

Potential drug-drug interactions of the antitumor drug abiraterone and the macrolide antibiotic erythromycin were studied at the stage of cytochrome P450 3A4 (CYP3A4) biotransformation. Using differential spectroscopy, we have shown that abiraterone is a type II ligand of CYP3A4. The dependence of CYP3A4 spectral changes on the concentration of abiraterone is sigmoidal, which indicates cooperative interactions of CYP3A4 with abiraterone; these interactions were confirmed by molecular docking. The dissociation constant (Kd ) and Hill coefficient (h) values for the CYP3A4-abiraterone complex were calculated as 3.8 ± 0.1 µM and 2.3 ± 0.2, respectively. An electrochemical enzymatic system based on CYP3A4 immobilized on a screen-printed electrode was used to show that abiraterone acts as a competitive inhibitor toward erythromycin N-demethylase activity of CYP3A4 (apparent Ki  = 8.1 ± 1.2 µM), while erythromycin and its products of enzymatic metabolism do not affect abiraterone N-oxidation by CYP3A4. In conclusion, the inhibition properties of abiraterone toward CYP3A4-dependent N-demethylation of erythromycin and the biologically inert behavior of erythromycin toward abiraterone hydroxylation were demonstrated.


Asunto(s)
Androstenos/farmacología , Antibacterianos/farmacocinética , Citocromo P-450 CYP3A/efectos de los fármacos , Eritromicina/farmacocinética , Antineoplásicos/farmacología , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Interacciones Farmacológicas , Humanos , Hidroxilación , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA