Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 28(10): 2476-2485, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30793442

RESUMEN

Microalgal bloom events can cause major ecosystem disturbances, devastate local marine economies, and endanger public health. Therefore, detecting and monitoring harmful microalgal taxa is essential to ensure effective risk management in waterways used for fisheries, aquaculture, recreational activity, and shipping. To fully understand the current status and future direction of algal bloom distributions, we need to know how populations and ecosystems have changed over time. This baseline knowledge is critical for predicting ecosystem responses to future anthropogenic change and will assist in the future management of coastal ecosystems. We explore a NGS metabarcoding approach to rapidly identify potentially harmful microalgal taxa in 63 historic and modern Australian marine port and ballast tank sediment samples. The results provide a record of past microalgal distribution and important baseline data that can be used to assess the efficacy of shipping guidelines, nutrient pollution mitigation, and predict the impact of climate change. Critically, eDNA surveys of archived sediments were able to detect harmful algal taxa that do not produce microscopic fossils, such as Chattonella, Heterosigma, Karlodinium, and Noctiluca. Our data suggest a potential increase in Australian harmful microalgal taxa over the past 30 years, and confirm ship ballast tanks as key dispersal vectors. These molecular mapping tools will assist in the creation of policies aimed at reducing the global increase and spread of harmful algal taxa and help prevent economic and public-health problems caused by harmful algal blooms.


Asunto(s)
Cambio Climático , Código de Barras del ADN Taxonómico , Ecosistema , Floraciones de Algas Nocivas , Microalgas/crecimiento & desarrollo , Acuicultura , Australia , Sedimentos Geológicos/microbiología , Microalgas/patogenicidad , Estudios Retrospectivos , Navíos
2.
Environ Sci Technol ; 51(17): 9433-9445, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28745897

RESUMEN

Chronic exposure to environmental contaminants can induce heritable "transgenerational" modifications to organisms, potentially affecting future ecosystem health and functionality. Incorporating transgenerational epigenetic heritability into risk assessment procedures has been previously suggested. However, a critical review of existing literature yielded numerous studies claiming transgenerational impacts, with little compelling evidence. Therefore, contaminant-induced epigenetic inheritance may be less common than is reported in the literature. We identified a need for multigeneration epigenetic studies that extend beyond what could be deemed "direct exposure" to F1 and F2 gametes and also include subsequent multiple nonexposed generations to adequately evaluate transgenerational recovery times. Also, increased experimental replication is required to account for the highly variable nature of epigenetic responses and apparent irreproducibility of current studies. Further, epigenetic end points need to be correlated with observable detrimental organism changes before a need for risk management can be properly determined. We suggest that epigenetic-based contaminant studies include concentrations lower than current "EC10-20" or "Lowest Observable Effect Concentrations" for the organism's most sensitive phenotypic end point, as higher concentrations are likely already regulated. Finally, we propose a regulatory framework and optimal experimental design that enables transgenerational epigenetic effects to be assessed and incorporated into conventional ecotoxicological testing.


Asunto(s)
Epigénesis Genética , Medición de Riesgo , Animales , Ecología , Ambiente , Humanos
3.
Appl Environ Microbiol ; 81(18): 6463-73, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26162884

RESUMEN

Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs.


Asunto(s)
Bacterias/genética , Agua Potable/microbiología , Microbiota , Análisis de Secuencia de ADN/métodos , Microbiología del Agua , Bacterias/clasificación , Bacterias/aislamiento & purificación , Biota , Cloraminas , Desinfección/métodos , Desinfección/normas , Genes de ARNr , Metagenoma , Interacciones Microbianas , Nitrificación , ARN Ribosómico 16S/genética , Microbiología del Agua/normas , Purificación del Agua/normas , Calidad del Agua
4.
Chemosphere ; 117: 185-92, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25038469

RESUMEN

Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth.


Asunto(s)
Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Biopelículas , Agua Potable/microbiología , Genoma Bacteriano , Purificación del Agua/normas , Bacterias/clasificación , Bacterias/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Australia del Sur
5.
Conserv Biol ; 26(2): 367-71, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22268756

RESUMEN

Increased education of consumers can be an effective tool for conservation of commercially harvested marine species when product labeling is accurate and allows an informed choice. However, generic labeling (e.g., as white fish or surimi) and mislabeling of seafood prevents this and may erode consumer confidence in seafood product labels in general. We used DNA barcoding to identify the species composition of two types of convenience seafood (i.e., products processed for ease of consumption): fish fingers (long pieces of fish covered with bread crumbs or batter, n = 241) and seafood sticks (long pieces of cooked fish, n = 30). In products labeled as either white fish or surimi, four teleost species were present. Less than 1.5% of fish fingers with species-specific information were mislabeled. Results of other studies show substantially more mislabeling (e.g., >25%) of teleost products, which likely reflects the lower economic gains associated with mislabeling of convenience seafood compared with whole fillets. In addition to species identification, seafood product labels should be required to contain information about, for example, harvesting practices, and our data indicate that consumers can have reasonable confidence in the accuracy of the labels of convenience seafood and thus select brands on the basis of information about current fisheries practice.


Asunto(s)
Código de Barras del ADN Taxonómico , Peces/genética , Alimentos Marinos , Animales , Peces/clasificación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA