Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 62(10): 2675-2683, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132820

RESUMEN

This paper proposes a new nBn photodetector (nBn-PD) based on InAsSb with a barrier doping engineering technique [core-shell doped barrier (CSD-B) nBn-PD] for utilization as a low-power receiver in satellite optical wireless communication (Sat-OWC) systems. In the proposed structure, the absorber layer is selected from an I n A s 1-x S b x (x=0.17) ternary compound semiconductor. The difference between this structure and other nBn structures is the placement of the top and bottom contacts in the form of a PN junction, which increases the efficiency of the proposed device through the creation of a built-in electric field. Also, a barrier layer is placed from the AlSb binary compound. The presence of the CSD-B layer with the high conduction band offset and very low valence band offset improves the performance of the proposed device compared to conventional PN and avalanche photodiode detectors. By applying -0.1V bias at 125 K, the dark current is demonstrated at 4.31×10-5 A/c m 2 by assuming high-level traps and defect conditions. Examining the figure of merit parameters under back-side illumination with a 50% cutoff wavelength of 4.6 µm shows that at 150 K, the responsivity of the CSD-B nBn-PD device reaches about 1.8 A/W under 0.05W/c m 2 light intensity. Regarding the great importance of using low-noise receivers in Sat-OWC systems, the results indicate that the noise, noise equivalent power, and noise equivalent irradiance are calculated as 9.98×10-15 A H z -1/2, 9.21×10-15 W H z 1/2, and 1.02×10-9 W/c m 2, respectively, at -0.5V bias voltage and 4 µm laser illumination with the influence of shot-thermal noise. Also, D ∗ obtains 3.26×1011 c m H z 1/2/W without using the anti-reflection coating layer. In addition, since the bit error rate (BER) plays an essential role in the Sat-OWC systems, the effect of different modulations on the BER sensitivity of the proposed receiver is investigated. The results represent that the pulse position modulation and return zero on-off keying modulations create the lowest BER. Attenuation is also investigated as a factor that significantly affects BER sensitivity. The results clearly express that the proposed detector provides the knowledge to achieve a high-quality Sat-OWC system.

2.
Front Optoelectron ; 16(1): 5, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022594

RESUMEN

We report a new nBn photodetector (nBn-PD) design based on the InAlSb/AlSb/InAlSb/InAsSb material systems for mid-wavelength infrared (MWIR) applications. In this structure, delta-doped compositionally graded barrier (δ-DCGB) layers are suggested, the advantage of which is creation of a near zero valence band offset in nBn photodetectors. The design of the δ-DCGB nBn-PD device includes a 3 µm absorber layer (n-InAs0.81Sb0.19), a unipolar barrier layer (AlSb), and 0.2 µm contact layer (n-InAs0.81Sb0.19) as well as a 0.116 µm linear grading region (InAlSb) from the contact to the barrier layer and also from the barrier to the absorber layer. The analysis includes various dark current contributions, such as the Shockley-Read-Hall (SRH), trap-assisted tunneling (TAT), Auger, and Radiative recombination mechanisms, to acquire more precise results. Consequently, we show that the method used in the nBn device design leads to diffusion-limited dark current so that the dark current density is 2.596 × 10-8 A/cm2 at 150 K and a bias voltage of - 0.2 V. The proposed nBn detector exhibits a 50% cutoff wavelength of more than 5 µm, the peak current responsivity is 1.6 A/W at a wavelength of 4.5 µm and a - 0.2 V bias with 0.05 W/cm2 backside illumination without anti-reflective coating. The maximum quantum efficiency at 4.5 µm is about 48.6%, and peak specific detectivity (D*) is of 3.37 × 1010 cm⋅Hz1/2/W. Next, to solve the reflection concern in this nBn devices, we use a BaF2 anti-reflection coating layer due to its high transmittance in the MWIR window. It leads to an increase of almost 100% in the optical response metrics, such as the current responsivity, quantum efficiency, and detectivity, compared to the optical response without an anti-reflection coating layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA