Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4829, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413685

RESUMEN

Nowadays, many researchers aim to fill polymer materials with inorganic nanoparticles to enhance the polymer properties and gain the merits of the polymeric host matrix. Sol-gel synthesized Co3O4 nanoparticles are subjected to different doses of electron beam (10, 20, and 30 kGy) to study their physiochemical properties and choose the optimized nanoparticles to fill our polymeric matrix. Crosslinked polyethylene (XLPE) has been filled with 5 wt % of un-irradiated cobalt oxide nanoparticles using the melt extruder method. The structural, optical, magnetic, and electrical properties of the XLPE/Co3O4 nanocomposite before and after exposure to different doses of electron beam radiation have been characterized. The crystallite size of face-centered cubic spinel Co3O4 nanoparticles has been confirmed by XRD whereas and their unique truncated octahedral shape obviously appears in SEM micrographs. The crystallite size of Co3O4 nanoparticles has decreased from 47.5 to 31.5 nm upon irradiation at a dose of 30 kGy, and significantly decreased to 18.5 nm upon filling inside XLPE matrix. Related to the oxidation effect of the electron beam, the Co2+/Co3+ ratio on the surface of Co3O4 nanoparticles has decreased upon irradiation as verified by XPS technique. This consequently caused the partial elimination of oxygen vacancies, mainly responsible for the weak ferromagnetic behavior of Co3O4 in its nanoscale. This appears as decreased saturation magnetization as depicted by VSM. The XLPE/Co3O4 nanocomposite has also shown weak ferromagnetic behavior but the coercive field (Hc) has increased from 112.57 to 175.72 G upon filling inside XLPE matrix and decreased to 135.18 G after irradiating the nanocomposite at a dose of 30 kGy. The ionic conductivity of XLPE has increased from 0.133 × 10-7 to 2.198 × 10-3 S/cm upon filling with Co3O4 nanoparticles while a slight increase is observed upon irradiation.

3.
Sci Rep ; 12(1): 19616, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379977

RESUMEN

In some cases, blends containing PVC and LLDPE show low compatibility. Adding styrene-butadiene rubber to the PVC/LLDPE mixtures leads to a noticeable increase in tensile strength and compatibility of the blends. Also, an improvement in tensile strength is observed after incorporating SBR compatibilizer resulting in entirely different gamma irradiation doses. Without a compatibilizer, the mixture exhibits a distributed PVC and LLDPE phase with variable sizes and shapes; even a sizable portion of the domains resemble droplets. Styrene butadiene rubber (SBR) and gamma radiation make mixtures of (PVC/LLDPE) more compatible. The SEM study of the blends demonstrated that adding the compatibilizer resulted in finer blend morphologies with less roughness. At the same time, gamma irradiation reduced this droplet and gave a more smooth surface. Poly(vinyl chloride) (PVC) was chemically modified with four different amino compounds, including ethylene diamine (EDA), aniline (An), p-anisidine (pA) and dimethyl aniline (DMA) for improving the electric conductivity and oil removal capability of the blend polymer. All ionomers were prepared by nucleophilic substitution in a solvent/non-solvent system under mild conditions. This work novelty shows a sustainable route for producing oil adsorption materials by recycling plastic waste. After the amination process of poly(vinyl chloride) the oil adsorption was significantly enhanced.


Asunto(s)
Cloruro de Vinilo , Óxido de Zinc , Butadienos , Cloruro de Polivinilo/química , Estirenos , Conductividad Eléctrica , Compuestos de Anilina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA