Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ther Adv Neurol Disord ; 17: 17562864241266113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091997

RESUMEN

Background: Eccentric muscle contractions elicit distinct physiological responses, including modulation of the cytokine profile. Although relevant for rehabilitation, the effect of eccentric muscle training on the immune system has never been investigated in multiple sclerosis (MS). Objectives: Examine the immediate cytokine response of interleukin-4 (IL-4), IL-6, IL-10, IL-17a, interferon-gamma, and tumor necrosis factor-alpha after a moderate eccentric training session in individuals with MS. Additionally, further investigate the association between systemic cytokine levels at rest and clinical measures of mobility and lower limb functional strength. Design: Observational study. Methods: The first session included blood sampling for baseline cytokine measures. Subsequently, the participant completed a battery of clinical assessments related to mobility and lower limb strength, that is, the Timed-Up-and-Go Test, Five-Repetition-Sit-to-Stand-Test (5STS), Four-Square-Step-Test, and Two-Minute-Walk-Test. The second session included the eccentric exercise training session, followed by a second blood sampling to assess the acute cytokine response to the eccentric training bout. This session comprised 10 exercises concentrating on the strength of the trunk and lower extremities. Results: Twenty-seven people with MS (pwMS), with a mean age of 40.1 years, participated in the study. No difference was demonstrated in the cytokine concentration values between baseline and immediately after the eccentric training session. The 5STS explained 30.3% of the variance associated with interferon-gamma, 14.8% with IL-4, and 13.8% with IL-10. Conclusion: An eccentric training bout does not impact cytokine concentration in the blood and, consequently, does not boost a pro-inflammatory response, thus, it can be performed on pwMS in a rehabilitation setting.


A strength-lengthening exercise session doesn't affect inflammation markers in people with multiple sclerosis The article explores how a specific type of exercise, called eccentric muscle training, affects people with multiple sclerosis (MS). Eccentric muscle training involves exercises where the muscle lengthens under tension, like when you slowly lower a heavy object. This type of exercise is known for causing unique physical responses, including changes in certain proteins in the blood that help control the immune system and inflammation. The main goal of the study was to see if a session of eccentric muscle training would change the levels of these proteins, called cytokines, in the blood of people with MS immediately after exercise. The cytokines studied included IL-4, IL-6, IL-10, IL-17a, INF-γ, and TNF-α. These proteins are important because they help regulate inflammation and immune responses. The researchers also wanted to know if there was any connection between the levels of these proteins at rest and measures of mobility and leg strength. Twenty-seven people with MS took part in the study. Their average age was 40.1 years. In the first session, blood samples were taken to measure the baseline levels of these proteins, and various tests were conducted to assess mobility and leg strength. In the second session, participants completed an eccentric training session, and another blood sample was taken immediately after to see if there were any immediate changes in the protein levels. The results showed no significant differences in the protein levels before and after the exercise session. This suggests that a single session of eccentric muscle training does not cause an immediate inflammatory response in the blood. Therefore, this type of exercise can be safely included in rehabilitation programs for people with MS without the risk of causing harmful inflammation. Overall, the study supports the safety of eccentric muscle training for people with MS and provides valuable insights into its immediate effects on the immune system.

3.
PLoS One ; 17(12): e0270875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36548298

RESUMEN

Physical activity and exercise are effective approaches in prevention and therapy of multiple diseases. Although the specific characteristics of lengthening contractions have the potential to be beneficial in many clinical conditions, eccentric training is not commonly used in clinical populations with metabolic, orthopaedic, or neurologic conditions. The purpose of this pilot study is to investigate the feasibility, functional benefits, and systemic responses of an eccentric exercise program focused on the trunk and lower extremities in people with low back pain (LBP) and multiple sclerosis (MS). A six-week eccentric training program with three weekly sessions is performed by people with LBP and MS. The program consists of ten exercises addressing strength of the trunk and lower extremities. The study follows a four-group design (N = 12 per group) in two study centers (Israel and Germany): three groups perform the eccentric training program: A) control group (healthy, asymptomatic); B) people with LBP; C) people with MS; group D (people with MS) receives standard care physiotherapy. Baseline measurements are conducted before first training, post-measurement takes place after the last session both comprise blood sampling, self-reported questionnaires, mobility, balance, and strength testing. The feasibility of the eccentric training program will be evaluated using quantitative and qualitative measures related to the study process, compliance and adherence, safety, and overall program assessment. For preliminary assessment of potential intervention effects, surrogate parameters related to mobility, postural control, muscle strength and systemic effects are assessed. The presented study will add knowledge regarding safety, feasibility, and initial effects of eccentric training in people with orthopaedic and neurological conditions. The simple exercises, that are easily modifiable in complexity and intensity, are likely beneficial to other populations. Thus, multiple applications and implementation pathways for the herein presented training program are conceivable. Trial registration: DRKS00020483 (DRKS, German Clinical Trials Register; 24th January 2020 -retrospectively registered; https://www.drks.de/DRKS00020483).


Asunto(s)
Dolor de la Región Lumbar , Esclerosis Múltiple , Humanos , Terapia por Ejercicio/métodos , Estudios de Factibilidad , Dolor de la Región Lumbar/terapia , Estudios Multicéntricos como Asunto , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/terapia , Proyectos Piloto
4.
Ther Adv Chronic Dis ; 10: 2040622319868379, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31489154

RESUMEN

BACKGROUND: Extensive research shows that virtual reality (VR) enhances motor learning and has advantages in balance and gait rehabilitation of neurological patients. There is still uncertainty, however, as for the practicality and efficacy of VR in long-term clinical routine. The objective of this study was to report on 3 years of clinical practice conducting VR-based rehabilitation of balance and gait in a large medical center. METHODS: This retrospective study systematically analyzed clinical records of patients who received VR-based rehabilitation in a large rehabilitation center during 3 years. We evaluated the effect of VR-based rehabilitation treatments on balance and gait, cognitive dual-task load, patient's balance confidence (ABC-scale) and perception of suitability. Patients were either neurological patients, allocated to five groups: Parkinson's disease (PD), poststroke (PS), multiple sclerosis, traumatic brain injury, and 'other conditions', or non-neurological patients. RESULTS: Records of 167 patients were analyzed. The availability of multiple VR systems and environments contributed to highly personalized interventions that tailored specific deficits with therapeutic goals. VR-based rehabilitation significantly improved balance and gait (measured by 10-Meter Walk Test, Timed-Up-and-Go, Berg Balance Scale, and Mini BESTest). Patients with PD and PS decreased dual-task cost while walking. Patients increased balance confidence and deemed VR suitable for rehabilitation. CONCLUSIONS: Our results suggest that VR-based rehabilitation is practicable and effective in clinical routine. Functional measures of balance and gait show significant improvements following VR-based interventions. Clinical approaches should exploit VR advantages for promoting motor learning and motivation. This study serves to aid transition to long-term clinical implementation of VR.

5.
Alzheimers Dement (N Y) ; 4: 118-129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29955655

RESUMEN

INTRODUCTION: Ubiquity of Alzheimer's disease (AD) coupled with relatively ineffectual pharmacologic treatments has spurred interest in nonpharmacologic lifestyle interventions for prevention or risk reduction. However, evidence of neuroplasticity notwithstanding, there are few scientifically rigorous, ecologically relevant brain training studies focused on building cognitive reserve in middle age to protect against cognitive decline. This pilot study will examine the ability of virtual reality (VR) cognitive training to improve cognition and cerebral blood flow (CBF) in middle-aged individuals at high AD risk due to parental history. METHODS: The design is an assessor-blind, parallel group, randomized controlled trial of VR cognitive-motor training in middle-aged adults with AD family history. The experimental group will be trained with adaptive "real-world" VR tasks targeting sustained and selective attention, working memory, covert rule deduction, and planning, while walking on a treadmill. One active control group will perform the VR tasks without treadmill walking; another will walk on a treadmill while watching scientific documentaries (nonspecific cognitive stimulation). A passive (waitlist) control group will not receive training. Training sessions will be 45 minutes, twice/week for 12 weeks. Primary outcomes are global cognition and CBF (from arterial spin labeling [ASL]) at baseline, immediately after training (training gain), and 3 months post-training (maintenance gain). We aim to recruit 125 participants, including 20 passive controls and 35 in the other groups. DISCUSSION: Current pharmacologic therapies are for symptomatic AD patients, whereas nonpharmacologic training is administrable before symptom onset. Emerging evidence suggests that cognitive training improves cognitive function. However, a more ecologically valid cognitive-motor VR setting that better mimics complex daily activities may augment transfer of trained skills. VR training has benefited clinical cohorts, but benefit in asymptomatic high-risk individuals is unknown. If effective, this trial may help define a prophylactic regimen for AD, adaptable for home-based application in high-risk individuals.

6.
J Electromyogr Kinesiol ; 40: 39-47, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29621683

RESUMEN

The purpose of this study was to evaluate the inter-observer reliability and agreement of balance recovery responses, step and multiple-steps thresholds, and kinematic parameters of stepping responses. Older and younger adults were exposed to 36 progressively challenging right and left unannounced surface translations during quiet standing. Subjects were instructed to "react naturally". Step threshold and multiple-step threshold were defined as the minimum disturbance magnitude that consistently elicited one and more than one recovery step, respectively. Fall threshold is defined as the minimum disturbance magnitude from which a fall resulted (i.e., fall into harness system or grasped one of the anchor straps of the harness, or grasped the research assistant to maintain balance). The inter-observer reliability of balance recovery responses for older adults were excellent, especially for step and multiple-step thresholds (ICC2,1 = 0.978 and ICC2,1 = 0.971, respectively; p < 0.001). Also kinematic parameters of stepping responses such as step recovery duration and step length were excellent (ICC2,1 > 0.975 and ICC2,1 = 0.978, respectively; p < 0.001), substantial reliability was found for swing phase duration (ICC2,1 = 0.693, p < 0.001). Younger adults showed similar ICCs. The Bland-Altman plots demonstrated excellent limits of agreement (LOA > 90%) for most kinematic step parameters and stepping thresholds. These results suggest that balance recovery responses and kinematic parameters of stepping including step threshold and multiple-step threshold are extremely reliable parameters. The measure of balance recovery responses from unexpected loss of balance is feasible and can be used in clinical setting and research-related assessments of fall risk.


Asunto(s)
Accidentes por Caídas/prevención & control , Músculo Esquelético/fisiología , Equilibrio Postural/fisiología , Adulto , Anciano , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Masculino , Variaciones Dependientes del Observador , Distribución Aleatoria , Reproducibilidad de los Resultados , Método Simple Ciego , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA