Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(22): 6658-6664, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38770882

RESUMEN

Synthetic quantum systems provide a pathway for exploring the physics of complex quantum matter in a programmable fashion. This approach becomes particularly advantageous when it comes to systems that are thermodynamically unfavorable. By sculpting the potential landscape of Cu(111) surfaces with carbon monoxide quantum corrals in a cryogenic scanning tunneling microscope, we created analogue simulators of planar organic molecules, including antiaromatic and non-Kekulé species that are generally reactive or unstable. Spectroscopic imaging of such synthetic molecules reveals close replications of molecular orbitals obtained from ab initio calculations of the organic molecules. We further illustrate the quantitative nature of such analogue simulators by faithful extraction of bond orders and global aromaticity indices, which are otherwise technically daunting using real molecules. Our approach therefore sets the stage for new research frontiers pertaining to the quantum physics and chemistry of designer nanostructures.

2.
Phys Chem Chem Phys ; 24(33): 19844-19852, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35960151

RESUMEN

Thermoelectric phenomena provide an alternative for power generation and refrigeration, which could be the best solution to the energy crisis by utilizing waste heat energy in the near future. In this study, we have investigated the structural, elastic, electronic, and thermoelectric properties of 18-valence electron count rhodium-based half-Heusler alloys focusing on RhTiP, RhTiAs, RhTiSb, and RhTiBi. The non-existence of imaginary frequencies in the phonon dispersion curve for these systems verifies that they are structurally stable. RhTiP is ductile, while others are brittle. The alloys are semiconducting with indirect band gaps ranging from 0.94 to 1.01 eV. While considering thermoelectricity, we discovered that p-type doping is more favorable in improving the thermoelectric properties. The calculated power factor values with p-type doping are comparable to some of the reported half-Heusler materials. The optimum figure of merit ZT is ∼1 for RhTiBi, and in between ∼(0.38-0.67) for RhTiP, RhTiAs, and RhTiSb. The low thermal conductivities and sufficiently large value of power factor of these alloys suggest that they are promising thermoelectric materials for use in thermoelectric applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA