Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Crystallogr ; 49(Pt 5): 1713-1720, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27738418

RESUMEN

Mesoporous silica films templated by pluronic P123 were prepared using spin and dip coating. The ordered cylindrical structure within the films deforms due to shrinkage during calcination. Grazing-incidence small-angle X-ray scattering (GISAXS) measurements reveal that both the unit cell and the cross section of the pores decrease in size, mainly normal to the surface of the substrate, leading to elliptical cross sections of the pores with axis ratios of about 1:2. Water take-up by the pores upon changing the relative humidity can be monitored quantitatively by the shift in the critical angle of X-ray reflection as seen by the Yoneda peak.

2.
Beilstein J Nanotechnol ; 7: 637-44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27335753

RESUMEN

We use a soft templating approach in combination with evaporation induced self-assembly to prepare mesoporous films containing cylindrical pores with elliptical cross-section on an ordered pore lattice. The film is deposited on silicon-based commercial atomic force microscope (AFM) cantilevers using dip coating. This bilayer cantilever is mounted in a humidity controlled AFM, and its deflection is measured as a function of relative humidity. We also investigate a similar film on bulk silicon substrate using grazing-incidence small-angle X-ray scattering (GISAXS), in order to determine nanostructural parameters of the film as well as the water-sorption-induced deformation of the ordered mesopore lattice. The strain of the mesoporous layer is related to the cantilever deflection using simple bilayer bending theory. We also develop a simple quantitative model for cantilever deflection which only requires cantilever geometry and nanostructural parameters of the porous layer as input parameters.

3.
Chemphyschem ; 14(13): 2893-6, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23843257

RESUMEN

Opal shell structures can be fabricated in two ways: By direct assembly from hollow spheres (hs-opal) or by infiltration of precursors into opal templates and inversion. The resulting lattice disturbances were characterized by scanning electron microscopy (SEM), optical microscopy, and transmission spectra. The hs-opal system shows much lower disturbances, for example, a lower number of cracks and lattice deformations. The strong suppression of crack formation in one of these inverse opal structures can be considered as promising candidates for the fabrication of more perfect photonic crystals.

4.
Angew Chem Int Ed Engl ; 48(34): 6212-33, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19670257

RESUMEN

The beauty of opals results from a densely packed, highly ordered arrangement of silica spheres with a diameter of several hundred nanometers. Such ordered nanostructures are typical examples of materials called photonic crystals, which can be formed by known microstructuring methods and by self-assembly. Opals represent a self-assembly approach to these structured media; such an approach can lead to novel materials for photonics, photocatalysis, and other areas. Although self-assembly leads to many types of defects, resulting in the surprising and very individual appearance of natural opals, it causes also difficulties in technological applications of opal systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA