Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 183(1-2): 60-68, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30566664

RESUMEN

DNA double-strand break (DSB) complexity is invoked to explain the increased efficacy of high-linear energy transfer (LET) radiation. Complexity is usually defined as presence of additional lesions in the immediate proximity of the DSB. DSB-clusters represent a different level of complexity that can jeopardize processing by destabilizing chromatin in the vicinity of the cluster. DSB-clusters are generated after exposure of cells to ionizing radiation (IR), particularly high-LET radiation, and have been considered as particularly consequential in several mathematical models of IR action. Yet, experimental demonstration of their relevance to the adverse IR effects, as well as information on the mechanisms underpinning their severity as DNA lesions is lacking. We addressed this void by developing cell lines with especially designed, multiply integrated constructs modeling defined combinations of DSB-clusters through appropriately engineered I-SceI meganuclease recognition sites. Using this model system, we demonstrate efficient activation of the DNA damage response, as well as a markedly increased potential of DSB-clusters, as compared to single-DSBs, to kill cells, and cause Parp1- dependent chromosomal translocations. We propose that DSB repair relying on first line DSB-processing pathways (canonical non-homologous end joining and to some degree homologous recombination repair) is compromised within DSB clusters, presumably through the associated chromatin destabilization, leaving alternative end joining as last option and translocation formation as a natural consequence. Our observations offer a mechanistic explanation for the increased efficacy of high-LET radiation.


Asunto(s)
Técnicas de Cultivo de Célula , Roturas del ADN de Doble Cadena/efectos de la radiación , Transferencia Lineal de Energía , Modelos Biológicos , Translocación Genética/efectos de la radiación , Animales , Línea Celular , Supervivencia Celular/efectos de la radiación , Células Clonales , Cricetulus , Citometría de Flujo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Microscopía Confocal , Plásmidos , Reacción en Cadena de la Polimerasa , Radiación Ionizante , Transfección
2.
Mol Cancer Ther ; 17(10): 2206-2216, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29970481

RESUMEN

Parp inhibitors (Parpi) are commonly used as single agents for the management of tumors with homologous recombination repair (HRR) deficiencies, but combination with radiotherapy (RT) is not widely considered due to the modest radiosensitization typically observed. BMN673 is one of the most recently developed Parpi and has been shown to mediate strong cell sensitization to methylating agents. Here, we explore the mechanisms of BMN673 radiosensitization to killing, aiming to combine it with RT. We demonstrate markedly stronger radiosensitization by BMN673 at concentrations substantially lower (50 nmol/L) than olaparib (3 µmol/L) or AG14361 (0.4 µmol/L) and dramatically lower as compared with second-generation inhibitors such as PJ34 (5 µmol/L). Notably, BMN673 radiosensitization peaks after surprisingly short contact times (∼1 hour) and at pharmacologically achievable concentrations in vivo BMN673 exerts a complex set of effects on DNA double-strand break (DSB) processing, including inhibition of classic nonhomologous end-joining (cNHEJ) and alternative end-joining (altEJ) pathway at high doses of ionizing radiation (IR). BMN673 enhances resection at DSB and favors HRR and altEJ at low clinically relevant IR doses. The combined outcome of these effects is an abrogation in the inherent balance of DSB processing culminating in the formation of chromosomal translocations that underpin radiosensitization. Our observations pave the way to clinical trials exploring inherent benefits in combining BMN673 with RT for the treatment of various forms of cancer. Mol Cancer Ther; 17(10); 2206-16. ©2018 AACR.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Ftalazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Células CHO , Línea Celular Tumoral , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Modelos Biológicos , Radiación Ionizante , Translocación Genética/efectos de los fármacos , Translocación Genética/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA