Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Cell Death Dis ; 13(12): 1050, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526620

RESUMEN

Impairment of liver regeneration leads to severe morbidity in acute and chronic severe liver disease. Transient receptor potential melastain 8 (TRPM8) is involved in a variety of processes, including temperature sensing, ion homeostasis, and cell proliferation. However, whether TRPM8 contributes to liver regeneration is still unclear. We assessed the effect and mechanism of TRPM8 in liver regeneration and hepatocyte proliferation in vivo and in vitro. In this study, we found that TRPM8 deficiency impairs liver regeneration in mice. Mechanistically, the results revealed that mitochondrial energy metabolism was attenuated in livers from TRPM8 knockout (KO) mice. Furthermore, we found that TRPM8 contributes to the proliferation of hepatocytes via PGC1α. Taken together, this study shows that TRPM8 contributes to liver regeneration in mice after hepatectomy. Genetic approaches and pharmacological approaches to regulate TRPM8 activity may be beneficial to the promotion of liver regeneration.


Asunto(s)
Regeneración Hepática , Canales Catiónicos TRPM , Ratones , Animales , Regeneración Hepática/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Hepatocitos/metabolismo , Hepatectomía , Hígado/metabolismo , Proliferación Celular , Ratones Noqueados , Metabolismo Energético , Ratones Endogámicos C57BL , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
3.
Cancer Med ; 11(23): 4721-4735, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35637633

RESUMEN

BACKGROUND: Abnormal DNA methylation is one of the most general epigenetic modifications in hepatocellular carcinoma (HCC). Recent research showed that DNA methylation was a prognostic indicator of all-cause HCC and nonviral HCC. However, whether DNA methylation-driver genes could be used for predicting survival, the probability of hepatitis-positive HCC remains unclear. METHODS: In this study, DNA methylation-driver genes (MDGs) were screened by a joint analysis of methylome and transcriptome data of 142 hepatitis-positive HCC patients. Subsequently, a prognostic risk score and nomogram were constructed. Finally, correlation analyses between the risk score and signaling pathways and immunity were conducted by GSVA and CIBERSORT. RESULTS: Through random forest screening and Cox progression analysis, 10 prognostic methylation-driver genes (AC008271.1, C11orf53, CASP8, F2RL2, GBP5, LUCAT1, RP11-114B7.6, RP11-149I23.3, RP11-383 J24.1, and SLC35G2) were screened out. As a result, a prognostic risk score signature was constructed. The independent value of the risk score for prognosis prediction were addressed in the TCGA-HCC and the China-HCC cohorts. Next, clinicopathological features were analyzed and HBV status and histological grade were screened to construct a nomogram together with the risk score. The prognostic efficiency of the nomogram was validated by the calibration curves and the concordance index (C index: 0.829, 95% confidence interval: 0.794-0.864), while its clinical application ability was confirmed by decision curve analysis (DCA). At last, the relationship between the risk score and signaling pathways, as well as the correlations between immune cells were elucidated preliminary. CONCLUSIONS: Taken together, our study explored a novel DNA methylation-driver gene risk score signature and an efficient nomogram for long-term survival prediction of hepatitis-positive HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Metilación de ADN , Nomogramas , Pronóstico
4.
Cell Biosci ; 12(1): 58, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525986

RESUMEN

BACKGROUND: Liver fibrosis represent a major global health care burden. Data emerging from recent advances suggest TRPM8, a member of the transient receptor potential (TRP) family of ion channels, plays an essential role in various chronic inflammatory diseases. However, its role in liver fibrosis remains unknown. Herein, we assessed the potential effect of TRPM8 in liver fibrosis. METHODS: The effect of TRPM8 was evaluated using specimens obtained from classic murine models of liver fibrosis, namely wild-type (WT) and TRPM8-/- (KO) fibrotic mice after carbon tetrachloride (CCl4) or bile duct ligation (BDL) treatment. The role of TRPM8 was systematically evaluated using specimens obtained from the aforementioned animal models after various in vivo and in vitro experiments. RESULTS: Clinicopathological analysis showed that TRPM8 expression was upregulated in tissue samples from cirrhosis patients and fibrotic mice. TRPM8 deficiency not only attenuated inflammation and fibrosis progression in mice but also helped to alleviate symptoms of cholangiopathies. Moreover, reduction in S100A9 and increase in HNF4α expressions were observed in liver of CCl4- and BDL- treated TRPM8-/- mice. A strong regulatory linkage between S100A9 and HNF4α was also noticed in L02 cells that underwent siRNA-mediated S100A9 knockdown and S100A9 overexpressing plasmid transfection. Lastly, the alleviative effect of a selective TRPM8 antagonist was confirmed in vivo. CONCLUSIONS: These findings suggest TRPM8 deficiency may exert protective effects against inflammation, cholangiopathies, and fibrosis through S100A9-HNF4α signaling. M8-B might be a promising therapeutic candidate for liver fibrosis.

5.
Biochem Biophys Res Commun ; 558: 86-93, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33906111

RESUMEN

Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP superfamily. Previous studies have demonstrated that TRPV3 is associated with myocardial fibrosis. However, the role of TRPV3 in hepatic fibrosis and its underlying mechanisms are still unclear. This study aimed to elucidate the underlying effects of TRPV3 on hepatic fibrosis at multiple biological levels. First, immunohistochemical staining was performed to examine TRPV3 expression in human hepatic cirrhosis tissues. Then, we established a CCl4-induced hepatic fibrosis mouse model. The TRPV3 selective agonist drofenine and its inhibitor, forsythoside B, were intraperitoneally injected to investigate the relationship between TRPV3 and liver fibrosis progression. Finally, in vitro studies were performed using hepatic stellate cells (HSCs) to discover the potential molecular biological mechanisms. Immunohistochemistry revealed TRPV3 overexpression in liver cirrhosis. In the liver fibrosis groups, TRPV3 inhibitor treatment significantly reduced liver fibrosis, while TRPV3 agonist exacerbated its progression. In HSCs, knocking down TRPV3 with siRNA impaired DNA synthesis and cell proliferation and increased cell apoptosis. Furthermore, we found that knockdown of TRPV3 could reduce the lectin like oxidized lowdensity lipoprotein receptor-1 (LOX-1) protein levels. Our research suggests that lower expression or functional levels of TRPV3 can ameliorate the inflammatory response and fibrotic tissue proliferation.


Asunto(s)
Cirrosis Hepática Experimental/tratamiento farmacológico , Canales Catiónicos TRPV/antagonistas & inhibidores , Animales , Ácidos Cafeicos/farmacología , Tetracloruro de Carbono/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Glucósidos/farmacología , Células Estrelladas Hepáticas/metabolismo , Humanos , Inmunohistoquímica , Cirrosis Hepática/metabolismo , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenilacetatos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Regulación hacia Arriba
6.
PeerJ ; 9: e10943, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33665036

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and the fourth leading cause of cancer-related deaths in the world. Although the treatment of HCC has made great progress in recent years, the therapeutic effects on HCC are still unsatisfactory due to difficulty in early diagnosis, chemoresistance and high recurrence rate post-surgery. METHODS: In this study, we identified differentially expressed genes (DEGs) based on four Gene Expression Omnibus (GEO) datasets (GSE45267, GSE98383, GSE101685 and GSE112790) between HCC and normal hepatic tissues. A protein-protein interaction (PPI) network was established to identify the central nodes associated with HCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the central nodes were conducted to find the hub genes. The expression levels of the hub genes were validated based on the ONCOMINE and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Additionally, the genetic alterations of the hub genes were evaluated by cBioPortal. The role of the hub genes on the overall survival (OS) and relapse survival (RFS) of HCC patients was evaluated by Kaplan-Meier plotter. At last, the mechanistic role of the hub genes was illustrated by in vitro experiments. RESULTS: We found the following seven hub genes: BUB1B, CCNB1, CCNB2, CDC20, CDK1, MAD2L1 and RRM2 using integrated bioinformatics analysis. All of the hub genes were significantly upregulated in HCC tissues. And the seven hub genes were associated with the OS and RFS of HCC patients. Finally, in vitro experiments indicated that BUB1B played roles in HCC cell proliferation, migration, invasion, apoptosis and cell cycle by partially affecting mitochondrial functions. CONCLUSIONS: In summary, we identified seven hub genes that were associated with the expression and prognosis of HCC. The mechanistic oncogenic role of BUB1B in HCC was first illustrated. BUB1B might play an important role in HCC and could be potential therapeutic targets for HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA