Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18615, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127807

RESUMEN

This study presents a 3D pick-rock contact calculation method for conical picks, aiming to develop a predictive method with high accuracy and lithological tolerance for peak cutting force (PCF). The method is based on the projection profile method and D. L. Sikarskie stress distribution function. By integrating Griffith's theory with rock damage constitutive model, the energy relationship between the rock fracturing process and crack propagation process is analyzed. Furthermore, in order to accurately correct the PCF, the energy correction function (C-Kf) is proposed to calculate the damage intensity index (Ke), which accounts for the relationship between rock brittleness and rock damage elastic-plastic energy. To validate the method, it is compared with full-scale cutting tests and three existing models, and statistical analysis confirms its high lithological tolerance and accuracy, the present model has the highest R2 of 0.90404, which is at least 12.5% higher relative to the mainstream models. Moreover, incorporating Ke into the method further enhances its predictive capability.

2.
Materials (Basel) ; 17(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39203255

RESUMEN

Shock absorbers are essential in enhancing vehicle ride comfort by mitigating vibrations. However, traditional rubber shock absorbers are constrained by their fixed stiffness and damping properties, limiting their adaptability to varying loads and thus affecting the ride comfort, especially under extreme road conditions. Shape Memory Alloys (SMAs), known for their intelligent material properties, offer a unique solution by adjusting stiffness and damping in response to temperature changes or strain rates, making them ideal for advanced vibration control applications. This study builds upon the Auricchio constitutive model to propose an enhanced SMA hyper-elastic constitutive model that accounts for different loading rates. This new model elucidates the impact of loading rates on the stiffness and damping characteristics of SMAs. Additionally, we introduce an innovative circular rubber-based SMA composite vibration reduction structure. Through a parameterized model and finite element simulation, we comprehensively analyze the stiffness and damping properties of the composite damper under various loading rates and harmonic excitations. Our findings suggest a novel approach to improving the vehicle ride comfort, offering significant potential for engineering applications and practical value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA