Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; : e202400558, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225342

RESUMEN

There is a great deal of research interest in the design of alternative metallodrugs to Pt(II)-derivatives for cancer treatment. The low solubility of such drugs in biological mediums leading to poor bioavailability is the major hurdle of several metal-based anticancer agents. These issues have recently been addressed by designing bio-active ligands based on metal-containing anticancer agents. Conjugating with bioactive ligands has significantly improved the bioavailability of the metallodrugs and their cancer cell targeting ability. One such naturally available bioactive ligand is curcumin. Until recently, several curcumin-based anticancer metallodrugs have been developed and successfully demonstrated for their anticancer studies. In this article, we aim to highlight, the synthesis, structure, and anticancer properties of various Zn(II)-curcumin-based coordination complexes. The effect of introducing different functional groups, targeting ligands, and photo-active ligands on the anticancer potential of such complexes has been mentioned in detail. The current status and future perspective on curcumin-based metallodrugs for cancer treatment have also been stated.

2.
Front Chem ; 12: 1361796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425658

RESUMEN

Extended organic polymers such as amorphous Covalent Organic Polymers (COPs) and crystalline Covalent Organic Frameworks (COFs) are emerging functional polymeric materials that have recently been shown promises as luminescent materials for chemosensing applications. A wide variety of luminescence COPs and COFs have been synthesized and successfully used as fluorescence-sensing materials for hazardous environmental pollutants and toxic contaminants. This review exemplifies various COPs and COFs-based fluorescence sensors for selective sensing of Fe(III) ions. The fluorescence sensors are sorted according to their structural features and each section provides a detailed discussion on the synthesis and fluorescence sensing ability of different COPs and COFs towards Fe(III) ions. Also, this review highlights the limitations of the existing organic polymer-based chemosensors and future perspectives on translating COPs and COFs-based fluorescence sensors for the practical detection of Fe(III) ions.

3.
Chem Commun (Camb) ; 59(77): 11456-11468, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37674461

RESUMEN

Organoarsenics are low-toxicity compounds that are used widely as feed additives to promote livestock growth, enhance meat pigmentation, and fight against intestinal parasites. The organoarsenic compounds are commonly found in poultry waste and the degradation of organoarsenic produces the toxic carcinogen inorganic arsenic such as As(V) and As(III), which results in severe arsenic pollution of soil and groundwater. As a consequence, there exists a high necessity to develop suitable sensing methods for the trace detection and quantification of organoarsenic feed additives in wastewater. Among various detection methods, in particular, fluorescence-based sensing has become a popular and efficient method used extensively for sensing water contaminants and environmental contaminants. In the recent past, a wide variety of fluorescence chemosensors have been designed and employed for the efficient sensing and quantification of the concentration of organoarsenic feed additives in different environmental samples. This review article systematically highlights various fluorescence chemosensors reported to date for fluorescence-based sensing of organoarsenic feed additives. The fluorescence sensors discussed in this review are classified and grouped according to their structures and functions, and in each section, we provide a detailed report on the structure, photophysics, and fluorescence sensing properties of different chemosensors. Lastly, the future perspectives on the design and development of practically useful sensor systems for selective and discriminative sensing of organoarsenic compounds have been stated.


Asunto(s)
Arsénico , Síndrome de Cockayne , Humanos , Fluorescencia , Luminiscencia
4.
Chem Commun (Camb) ; 59(13): 1728-1743, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36661305

RESUMEN

Developing low-cost and reliable sensor systems for the detection of trace amounts of toxic gases is an important area of research. Ammonia (NH3) is a commonly produced industrial chemical and a harmful colorless pungent gas released from various manufacturing and processing industries. Continuous exposure to NH3 vapor causes serious menace to human health, microorganisms, and the ecosystem. Exposure to relatively higher concentrations of NH3 severely affects the respiratory system and leads to kidney failure, nasal erosion ulcers, and gastrointestinal diseases. Excessive accumulation of NH3 in the biosphere can cause various metabolic disruptions. As a consequence of this, therefore, suitable sensing methods for selective detection and quantification of trace amounts of NH3 are of utmost need to protect the environment and living systems. Given this, there have been significant research advances in the preceding years on the development of fluorescence chemosensors for efficient sensing and monitoring of the trace concentration of NH3 both in solution and vapor phases. This review article highlights several fluorescence chemosensors reported until recently for sensing and quantifying NH3 in the vapor phase or ammonium ions (NH4+) in the solution phase. The wide variety of fluorescence chemosensors discussed in this article are systematically gathered according to their structures, functional properties, and fluorescence sensing properties. Finally, the usefulness and existing challenges of using the fluorescence-based sensing method for NH3 detection and the future perspective on this research area have also been highlighted.


Asunto(s)
Amoníaco , Compuestos de Amonio , Humanos , Amoníaco/química , Ecosistema , Fluorescencia , Gases/química
5.
Dalton Trans ; 52(9): 2566-2570, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36330868

RESUMEN

We report the very first example of a self-assembled p-cymene-Ru(II) metallocycle based on a green emitting 4-amino-1,8-naphthalimide Tröger's base (TBNap) supramolecular scaffold. A new cleft-shaped TBNap-derived di-4-picolyl donor was synthesized and reacted in a 2 : 2 stoichiometry ratio with a dinuclear Ru(II) acceptor (Ru-A) to generate a [2 + 2] self-assembled metallocycle (TBNap-Ru-MC) in good yield. Both TBNap and TBNap-Ru-MC showed positive solvatochromism in different solvents with varying polarities. In addition, the binding propensity of cationic TBNap-Ru-MC toward the heparin polyanion was determined using fluorescence titration studies. The initial fluorescence emission of TBNap-Ru-MC was quenched upon the gradual addition of the heparin polyanion, and the Stern-Volmer quenching constant (KSV) was calculated to be 3.97 × 105 M-1.

6.
Inorg Chem ; 61(30): 11592-11599, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35857283

RESUMEN

A unique V-shaped "chiral" supramolecular scaffold, N-(4-pyridyl)-4-amino-1,8-naphthalimide Tröger's base (TBNap), was synthesized in good yield from a precursor N-(4-pyridyl)-4-amino-1,8-naphthalimide (Nap). TBNap was characterized using different spectroscopic methods and the molecular structure was elucidated by diffraction analysis. A new p-cymene-Ru(II)-curcumin conjugate (TB-Ru-Cur) was designed by reacting TBNap dipyridyl donor and ruthenium-curcuminato acceptor [RuCur = (p-cymene)Ru-(curcuminato)Cl] in the presence of silver triflate. TB-Ru-Cur was isolated in quantitative yield and characterized using Fourier transform infrared (FT-IR), NMR (1H, 13C, and 19F), and electrospray ionization mass spectrometry (ESI-MS), and the molecular structure has been predicted using a computational study. Both TBNap and TB-Ru-Cur exhibited intramolecular charge transfer (ICT)-based fluorescence emission. Furthermore, the anticancer properties of TBNap, Ru-Cur, and TB-Ru-Cur were assessed in different cancer cell lines. Gratifyingly, the conjugate TB-Ru-Cur displayed fast-cellular internalization and good cytotoxicity against HeLa, HCT-116, and HepG2 cancer cells and the estimated IC50 value was much lower than that of the precursors (TBNap and Ru-Cur) and the well-known chemotherapeutic drug cisplatin.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Curcumina , Rutenio , 1-Naftilamina/análogos & derivados , Antineoplásicos/química , Línea Celular Tumoral , Complejos de Coordinación/química , Curcumina/química , Curcumina/farmacología , Cimenos , Humanos , Naftalimidas , Quinolonas , Rutenio/química , Rutenio/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
7.
Chem Commun (Camb) ; 56(17): 2562-2565, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32011616

RESUMEN

The 4-amino-1,8-naphthalimide-Tröger's base fluorophore, TBNap-TPy, adorned with phenyl-terpyridine moiety was synthesised and assessed for its aggregation-induced emission (AIE) behaviour. TBNap-TPy was further employed as a fluorescent sensor for the discriminative sensing of π-electron-deficient nitroaromatic; the TBNap-TPy displaying the largest fluorescence quenching with high selectivity for picric acid, a harmful environmental pollutant widely used in the dye industries.

8.
Chem Commun (Camb) ; 55(81): 12140-12143, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31531424

RESUMEN

The 4-amino-1,8-naphthalimide Tröger's base functionalized triazine covalent organic polymer TB-TZ-COP was synthesised and employed as a "turn-on" fluorescent and a colorimetric sensor for the discriminative sensing of volatile organic compounds; the TB-TZ-COP displaying the largest fluorescent enhancement and high sensitivity for 1,4-dioxane, a harmful environmental pollutant classified as a Group 2B carcinogen.

9.
Org Biomol Chem ; 17(8): 2287, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30702731

RESUMEN

Correction for 'Glycosylated naphthalimides and naphthalimide Tröger's bases as fluorescent aggregation probes for Con A' by Elena Calatrava-Pérez et al., Org. Biomol. Chem., 2019, DOI: 10.1039/c8ob02980f.

10.
Org Biomol Chem ; 17(8): 2116-2125, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30629076

RESUMEN

Herein we report the synthesis of fluorescent, glycosylated 4-amino-1,8-naphthalimide (Nap) 1, and the related 1,8-naphthalimides Tröger's bases (TBNap) 2 and 3, from 1,8-naphthalic anhydride precursors, the α-mannosides being introduced through the use of CuAAC mediated 'click' chemistry. We investigate the photophysical properties of these probes in buffered solution and demonstrate their ability to function as fluorescent probes for Concanavalin A (Con A) lectin. We show that both the Nap and TBNap structures self-assemble in solution. The formation of the resulting supramolecular structures is driven by head-to-tail π-π stacking and extended hydrogen bonding interactions of the Nap and the triazole moieties. These interactions give rise to spherical nano-structures (ca. 260 nm and 100 nm, for 1 and 3, respectively), which interact with the Con-A protein, the interaction being probed by using both luminescent and Scanning Electron Microscopy imaging as well as dynamic light scattering measurements. Finally, we show that these supramolecular assembles can be used as luminescent imaging agents, through confocal fluorescence imaging of HeLa cells of the per-acetylated version 2.

11.
Chem Commun (Camb) ; 54(33): 4120-4123, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29623325

RESUMEN

The synthesis, photophysics and biological investigation of fluorescent 4-amino-1,8-naphthalimide Tröger's bases (TB-1-TB-3) and a new Tröger's base p-cymene-Ru(ii)-curcumin organometallic conjugate (TB-Ru-Cur) are described; these compounds showed fast cellular uptake and displayed good luminescence and cytotoxicity against cervical cancer cells.

12.
Chem Commun (Camb) ; 53(93): 12512-12515, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29085921

RESUMEN

A V-shaped 4-amino-1,8-naphthalimide derived dipyridyl ligand comprising the Tröger's base structural motif has been synthesised and subsequently used in the formation of two new supramolecular coordination polymers.

13.
Org Biomol Chem ; 15(35): 7321-7329, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28828420

RESUMEN

We report here a novel one-pot synthetic strategy for the synthesis of a family of N-alkyl-1,8-naphthalimide based Tröger's bases via a nucleophilic substitution reaction of a common 'precursor' (or a 'synthon') N-aryl-1,8-naphthalimide Tröger's base heated at 80 °C in neat aliphatic primary amine, in overall yield of 65-96%. This methodology provides an efficient and one-step facile route to design 1,8-naphthalimide derived Tröger's base structures in analytically pure form without the use of column chromatography purification, that can be used in medicinal chemistry and as supramolecular scaffolds. We also report the formation of the corresponding anhydride, and the crystallographic analysis of two of the resulting products, that of the N-phenyl-4-amino-1,8-naphthalimide and the anhydride derived Tröger's bases.

14.
Chem Sci ; 8(2): 1535-1546, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572910

RESUMEN

A V-Shaped 4-amino-1,8-napthalimide derived tetracarboxylic acid linker (L; bis-[N-(1,3-benzenedicarboxylic acid)]-9,18-methano-1,8-naphthalimide-[b,f][1,5]diazocine) comprising the Tröger's base (TB) structural motif was rationally designed and synthesised to access a nitrogen-rich fluorescent supramolecular coordination polymer. By adopting the straight forward precipitation method, a new luminescent nanoscale Zn(ii) coordination polymer (TB-Zn-CP) was synthesized in quantitative yield using Zn(OAc)2·2H2O and tetraacid linker L (1 : 0.5) in DMF at room temperature. The phase-purity of as-synthesised TB-Zn-CP was confirmed by X-ray powder diffraction analysis, infra-red spectroscopy, and elemental analysis. Thermogravimetric analysis suggests that TB-Zn-CP is thermally stable up to 330 °C and the morphological features of TB-Zn-CP was analysed by SEM and AFM techniques. The N2 adsorption isotherm of thermally activated TB-Zn-CP at 77 K revealed a type-II reversible adsorption isotherm and the calculated Brunauer-Emmett-Teller (BET) surface area was found to be 72 m2 g-1. Furthermore, TB-Zn-CP displayed an excellent CO2 uptake capacity of 76 mg g-1 at 273 K and good adsorption selectivity for CO2 over N2 and H2. The aqueous suspension of as-synthesized TB-Zn-CP showed strong green fluorescence (λmax = 520 nm) characteristics due to the internal-charge transfer (ICT) transition and was used as a fluorescent sensor for the discriminative sensing of nitroaromatic explosives. The aqueous suspension of TB-Zn-CP showed the largest quenching responses with high selectivity for phenolic-nitroaromatics (4-NP, 2,4-DNP and PA) even in the concurrent presence of other potentially competing nitroaromatic analytes. The fluorescence titration studies also provide evidence that TB-Zn-CP detects picric acid as low as the parts per billion (26.3 ppb) range. Furthermore, the observed fluorescence quenching responses of TB-Zn-CP towards picric acid were highly reversible. The highly selective fluorescence quenching responses including the reversible detection efficiency make the nanoscale coordination polymer TB-Zn-CP a potential material for the discriminative fluorescent sensing of nitroaromatic explosives.

15.
Chimia (Aarau) ; 69(9): 541-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26507762

RESUMEN

A benzil-based semi-rigid dinuclear-organometallic acceptor 4,4'-bis[trans-Pt(PEt(3))(2)(NO(3))(ethynyl)]benzil (bisPt-NO(3)) containing a Pt-ethynyl functionality was synthesized in good yield and characterized by multinuclear NMR ((1)H, (31)P, and (13)C), electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction analysis of the iodide analogue bisPt-I. The stoichiometric (1:1) combination of the acceptor bisPt-NO(3) separately with four different ditopic donors (L(1)-L(4); L(1) = 9-ethyl-3,6-di(1H-imidazol-1-yl)-9H-carbazole, L(2) = 1,4-bis((1H-imidazol-1-yl)methyl)benzene, L(3) = 1,3-bis((1H-imidazol-1-yl)methyl)benzene and L(4) = 9,10-bis((1H-imidazol-1-yl) methyl)anthracene) yielded four [2 + 2] self-assembled metallacycles M(1)-M(4) in quantitative yields, respectively. All these newly synthesized assemblies were characterized by various spectroscopic techniques (NMR, IR, ESI-MS) and their sizes/shapes were predicted through geometry optimization employing the PM6 semi-empirical method. The benzil moiety was introduced in the backbone of the acceptor bisPt-NO(3) due to the interesting structural feature of long carbonyl C-C bond (∼1.54 Å), which enabled us to probe the role of conformational flexibility on size and shapes of the resulting coordination ensembles.


Asunto(s)
Compuestos Macrocíclicos/química , Compuestos Organometálicos/química , Fenilglioxal/análogos & derivados , Platino (Metal)/química , Diseño de Fármacos , Compuestos Macrocíclicos/síntesis química , Modelos Moleculares , Conformación Molecular , Fenilglioxal/química
16.
Chem Commun (Camb) ; 51(89): 16014-32, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26463400

RESUMEN

Selective and discriminative detection of -NO2 containing high energy organic compounds such as picric acid (PA), 2,4,6-trinitrotoluene (TNT) and dinitrotoluene (DNT) has become a challenging task due to concerns over national security, criminal investigations and environment protections. Among various known detection methods, fluorescence techniques have gained special attention in recent time. A wide variety of fluorescent chemosensors have been developed for nitroaromatic explosive detection. In this review article, we provide an overview of the recent developments made in small molecule-based turn-off fluorescent sensors for nitroaromatic explosives with special focus on organic and H-bonded supramolecular sensors. The fluorescent sensors discussed in this review are classified and organized according to their functionality and their recognition of nitroaromatics by fluorescence quenching.

17.
Chemistry ; 21(18): 6656-66, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25694365

RESUMEN

Efficient sensing of trace amount nitroaromatic (NAC) explosives has become a major research focus in recent time due to concerns over national security as well as their role as environment pollutants. NO2 -containing electron-deficient aromatic compounds, such as picric acid (PA), trinitrotoluene (TNT), and dinitrotoluene (DNT), are the common constituents of many commercially available chemical explosives. In this article, we have summarized our recent developments on the rational design of electron-rich self-assembled discrete molecular sensors and their efficacy in sensing nitroaromatics both in solution as well as in vapor phase. Several π-electron-rich fluorescent metallacycles (squares, rectangles, and tweezers/pincers) and metallacages (trigonal and tetragonal prisms) have been synthesized by means of metal-ligand coordination-bonding interactions, with enough internal space to accommodate electron-deficient nitroaromatics at the molecular level by multiple supramolecular interactions. Such interactions subsequently result in the detectable fluorescence quenching of sensors even in the presence of trace quantities of nitroaromatics. The fascinating sensing characteristics of molecular architectures discussed in this article may enable future development of improved sensors for nitroaromatic explosives.

18.
Dalton Trans ; 42(8): 2998-3008, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23258385

RESUMEN

Coordination self-assembly of a series of tetranuclear Pt(II) macrocycles containing an organometallic backbone incorporating ethynyl functionality is presented. The 1:1 combination of a linear acceptor 1,4-bis[trans-Pt(PEt3)2(NO3)(ethynyl)]benzene (1) with three different dipyridyl donor 'clips' (La­Lc) afforded three [2 + 2] self-assembled Pt(II)4 macrocycles (2a­2c) in quantitative yields, respectively [La = 1,3-bis(3-pyridyl)isothalamide; Lb = 1,3-bis(3-pyridyl)ethynylbenzene; Lc = 1,8-bis(4-pyridyl)ethynylanthracene]. These macrocycles were characterized by multinuclear NMR (1H and 31P); ESI-MS spectroscopy and the molecular structures of 2a and 2b were established by single crystal X-ray diffraction analysis. These macrocycles (2a­2c) are fluorescent in nature. The amide functionalized macrocycle 2a is used as a receptor to check the binding affinity of aliphatic acyclic dicarboxylic acids. Such binding affinity is examined using fluorescence and UV-Vis spectroscopic methods. A solution state fluorescence study showed that macrocycle 2a selectively binds (K(SV) = 1.4 × 10(4) M(-1)) maleic acid by subsequent enhancement in emission intensity. Other aliphatic dicarboxylic acids such as fumaric, succinic, adipic, mesaconic and itaconic acids caused no change in the emission spectra; thereby demonstrating its potential use as a macrocyclic receptor in distinction of maleic acid from other aliphatic dicarboxylic acids.


Asunto(s)
Complejos de Coordinación/síntesis química , Ácidos Dicarboxílicos/química , Compuestos Macrocíclicos/síntesis química , Platino (Metal)/química , Complejos de Coordinación/química , Cristalografía por Rayos X , Compuestos Macrocíclicos/química , Modelos Moleculares , Estructura Molecular
19.
Inorg Chem ; 51(24): 13072-4, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23181445

RESUMEN

[2 + 4] self-assembly of a pyrene-functionalized Pt(II)(8) tetragonal prism (2) is achieved using a newly designed star-shaped organometallic acceptor (1) in combination with an amide-based "clip" donor (L). The propensity of this prism (2) as a selective sensor for nitroaromatics (2,4-dinitrotoluene, 1,3,5-trinitrotoluene, and picric acid), which are the chemical constituents of many commercial explosives, has been examined.

20.
Dalton Trans ; 41(43): 13330-7, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22996587

RESUMEN

Two new hydroxynaphthyl-hydrazone based fluorogenic chemosensors R1 and R2 have been synthesized by Schiff base condensation of Tris(4-formylphenyl)amine with 1-hydroxynaphthalene-2-hydrazide and 1-hydroxynaphthalene-2-carbohydrazone, respectively. They are examined as highly selective and sensitive receptors for Cu2+ ions in aqueous medium. Electronic absorption as well as fluorescence titration studies of receptors R1 and R2 with different metal cations in H2O/CH3CN medium showed highly selective and very rapid (<2 min) binding affinity towards Cu2+ ions even in the presence of other commonly coexisting metal ions such as Na+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Cd2+ and Hg2+. Quantification of the fluorescence titration analysis indicated that these newly synthesized receptors (R1 and R2) can indicate the presence of Cu2+ ions even at very low concentrations of 598 and 676 ppt, respectively. In addition, the propensity of these receptors as bio-imaging fluorescent probes to detect Cu2+ ions in human cervical HeLa cancer cell lines and their cytotoxicity against HeLa cells have been investigated.


Asunto(s)
Complejos de Coordinación/química , Cobre/análisis , Colorantes Fluorescentes/química , Hidrazonas/química , Microscopía Confocal , Naftoles/química , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/toxicidad , Células HeLa , Humanos , Iones/química , Bases de Schiff/química , Espectrometría de Fluorescencia , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA