Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain ; 140(9): 2475-2489, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29050393

RESUMEN

Auditory verbal hallucinations (hearing voices) are typically associated with psychosis, but a minority of the general population also experience them frequently and without distress. Such 'non-clinical' experiences offer a rare and unique opportunity to study hallucinations apart from confounding clinical factors, thus allowing for the identification of symptom-specific mechanisms. Recent theories propose that hallucinations result from an imbalance of prior expectation and sensory information, but whether such an imbalance also influences auditory-perceptual processes remains unknown. We examine for the first time the cortical processing of ambiguous speech in people without psychosis who regularly hear voices. Twelve non-clinical voice-hearers and 17 matched controls completed a functional magnetic resonance imaging scan while passively listening to degraded speech ('sine-wave' speech), that was either potentially intelligible or unintelligible. Voice-hearers reported recognizing the presence of speech in the stimuli before controls, and before being explicitly informed of its intelligibility. Across both groups, intelligible sine-wave speech engaged a typical left-lateralized speech processing network. Notably, however, voice-hearers showed stronger intelligibility responses than controls in the dorsal anterior cingulate cortex and in the superior frontal gyrus. This suggests an enhanced involvement of attention and sensorimotor processes, selectively when speech was potentially intelligible. Altogether, these behavioural and neural findings indicate that people with hallucinatory experiences show distinct responses to meaningful auditory stimuli. A greater weighting towards prior knowledge and expectation might cause non-veridical auditory sensations in these individuals, but it might also spontaneously facilitate perceptual processing where such knowledge is required. This has implications for the understanding of hallucinations in clinical and non-clinical populations, and is consistent with current 'predictive processing' theories of psychosis.


Asunto(s)
Giro del Cíngulo/fisiología , Alucinaciones/fisiopatología , Corteza Prefrontal/fisiología , Estimulación Acústica , Adulto , Percepción Auditiva/fisiología , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Incertidumbre , Adulto Joven
2.
Cereb Cortex ; 25(11): 4638-50, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26092220

RESUMEN

Humans can generate mental auditory images of voices or songs, sometimes perceiving them almost as vividly as perceptual experiences. The functional networks supporting auditory imagery have been described, but less is known about the systems associated with interindividual differences in auditory imagery. Combining voxel-based morphometry and fMRI, we examined the structural basis of interindividual differences in how auditory images are subjectively perceived, and explored associations between auditory imagery, sensory-based processing, and visual imagery. Vividness of auditory imagery correlated with gray matter volume in the supplementary motor area (SMA), parietal cortex, medial superior frontal gyrus, and middle frontal gyrus. An analysis of functional responses to different types of human vocalizations revealed that the SMA and parietal sites that predict imagery are also modulated by sound type. Using representational similarity analysis, we found that higher representational specificity of heard sounds in SMA predicts vividness of imagery, indicating a mechanistic link between sensory- and imagery-based processing in sensorimotor cortex. Vividness of imagery in the visual domain also correlated with SMA structure, and with auditory imagery scores. Altogether, these findings provide evidence for a signature of imagery in brain structure, and highlight a common role of perceptual-motor interactions for processing heard and internally generated auditory information.


Asunto(s)
Percepción Auditiva/fisiología , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Imaginación/fisiología , Individualidad , Ruido , Estimulación Acústica , Adulto , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/irrigación sanguínea , Vías Nerviosas/fisiología , Oxígeno/sangre , Análisis de Regresión , Adulto Joven
3.
J Cogn Neurosci ; 23(4): 961-77, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20350182

RESUMEN

This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural responses to these manipulations under conditions of covert rehearsal (Experiment 1). A left-dominant network of temporal and motor cortex showed increased activity for longer items, with motor cortex only showing greater activity concomitant with adding consonant clusters. An individual-differences analysis revealed a significant positive relationship between activity in the angular gyrus and the hippocampus, and accuracy on pseudoword repetition. As models of pWM stipulate that its neural correlates should be activated during both perception and production/rehearsal [Buchsbaum, B. R., & D'Esposito, M. The search for the phonological store: From loop to convolution. Journal of Cognitive Neuroscience, 20, 762-778, 2008; Jacquemot, C., & Scott, S. K. What is the relationship between phonological short-term memory and speech processing? Trends in Cognitive Sciences, 10, 480-486, 2006; Baddeley, A. D., & Hitch, G. Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). New York: Academic Press, 1974], we further assessed the effects of the two factors in a separate passive listening experiment (Experiment 2). In this experiment, the effect of the number of syllables was concentrated in posterior-medial regions of the supratemporal plane bilaterally, although there was no evidence of a significant response to added clusters. Taken together, the results identify the planum temporale as a key region in pWM; within this region, representations are likely to take the form of auditory or audiomotor "templates" or "chunks" at the level of the syllable [Papoutsi, M., de Zwart, J. A., Jansma, J. M., Pickering, M. J., Bednar, J. A., & Horwitz, B. From phonemes to articulatory codes: an fMRI study of the role of Broca's area in speech production. Cerebral Cortex, 19, 2156-2165, 2009; Warren, J. E., Wise, R. J. S., & Warren, J. D. Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends in Neurosciences, 28, 636-643, 2005; Griffiths, T. D., & Warren, J. D. The planum temporale as a computational hub. Trends in Neurosciences, 25, 348-353, 2002], whereas more lateral structures on the STG may deal with phonetic analysis of the auditory input [Hickok, G. The functional neuroanatomy of language. Physics of Life Reviews, 6, 121-143, 2009].


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Memoria a Corto Plazo/fisiología , Fonética , Estimulación Acústica/métodos , Adulto , Análisis de Varianza , Encéfalo/anatomía & histología , Encéfalo/irrigación sanguínea , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Lingüística , Imagen por Resonancia Magnética/métodos , Masculino , Oxígeno/sangre , Tiempo de Reacción/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA