Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; : e2402765, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940416

RESUMEN

Droplet-based electricity generators (DEGs) are increasingly recognized for their potential in converting renewable energy sources. This study explores the interplay of surface hydrophobicity and stickiness in improving DEG efficiency. It find that the high-performance C-WaxDEGs leverage both these properties. Specifically, DEGs incorporating polydimethylsiloxane (PDMS) with carnauba wax (C-wax) exhibit increased output as surface stickiness decreases. Through experimental comparisons, PDMS with 1wt.% C-wax demonstrated a significant power output increase from 0.07 to 1.2 W m- 2, which attribute to the minimized adhesion between water molecules and the polymer surface, achieved by embedding C-wax into PDMS surface to form microstructures. This improvement in DEG performance is notable even among samples with similar surface potentials and contact angles, suggesting that C-wax's primary contribution is in reducing surface stickiness rather than altering other surface properties. The further investigations into the C-WaxDEG variant with 1wt.% C-wax PDMS uncover its potential as a sensor for water quality parameters such as temperature, pH, and heavy metal ion concentration. These findings open avenues for the integration of C-WaxDEGs into flexible electronic devices aimed at environmental monitoring.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38593466

RESUMEN

The global annual vegetable and fruit waste accounts for more than one-fifth of food waste, mainly due to deterioration. In addition, agricultural product spoilage can produce foodborne illnesses and threaten public health. Eco-friendly preservation technologies for extending the shelf life of agricultural products are of great significance to socio-economic development. Here, we report a dual-functional TENG (DF-TENG) that can simultaneously prolong the storage period of vegetables and realize wireless storage condition monitoring by harvesting the rotational energy. Under the illumination of the self-powered high-voltage electric field, the deterioration of vegetables can be effectively slowed down. It can not only decrease the respiration rate and weight loss of pakchoi but also increase the chlorophyll levels (∼33.1%) and superoxide dismutase activity (∼11.1%) after preservation for 4 days. Meanwhile, by harvesting the rotational energy, the DF-TENG can be used to drive wireless sensors for monitoring the storage conditions and location information of vegetables during transportation in real time. This work provides a new direction for self-powered systems in cost-effective and eco-friendly agricultural product preservation, which may have far-reaching significance to the construction of a sustainable society for reducing food waste.

3.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475142

RESUMEN

To ensure stable and normal transformer operation, light gas protection of the transformer Buchholz relay is essential. However, false alarms related to light gas protection are common, and troubleshooting them often requires on-site gas sampling by personnel. During this time, the transformer's operating state may rapidly deteriorate, posing a safety threat to field staff. To tackle these challenges, this work presents the near-field, thin-sliced transformer monitoring system that uses Electromagnetic Energy Transmission and Wireless Sensing Device (ETWSD). The system leverages external wireless energy input to power gas monitoring sensors. Simultaneously, it employs Near-Field Communication to obtain real-time concentrations of light gases, along with the electrified state and temperature. In field testing conducted on transformer relays' gas collection chambers, the ETWSD effortlessly monitors parameters within warning ranges, encompassing methane gas concentrations around 1000 ppm, leakage voltage ranging from 0-100 V, and relay working temperatures up to 90 °C. Additionally, to facilitate real-time diagnosis for electrical workers, we have developed an Android-based APP software that displays current light gas concentrations, leakage voltage collection values, and temperature, while also enabling threshold judgment, alarms, and data storage. The developed ETWSD is expected to aid on-site personnel in promptly and accurately evaluating transformer light gas protection error alarm faults. It provides a method for simultaneous, contactless, and rapid monitoring of multiple indicators.

4.
Materials (Basel) ; 16(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37444979

RESUMEN

Triboelectric nanogenerators (TENGs) possess significant attributes, such as a simple structure, high energy conversion efficiency, and ease of fabrication, rendering them crucial for powering mobile and distributed low-power electronic devices. In this study, a multilayer spring TENG with a cushion layer structure is proposed that enhances the output performance of the basic TENG structure. The fundamental topology of the energy harvesting circuit is chosen based on the electrical performance parameters of the generator and optimizes the selection of each electronic component in the actual circuit. This allows the small-size TENG (2 cm3) to have a high storable power density (5.45 mW m-2). Finally, the fabrication method of the small-size TENG and how to choose suitable electronic components based on the intrinsic electrical parameters of the TENG were summarized. This work provides valuable guidance for designing and fabricating self-powered IoT node devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA