Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 322: 111344, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35659944

RESUMEN

Globally, root-knot nematodes (RKNs) cause massive production losses in all major crops. E3 ubiquitin ligases are involved in plant growth, development and immune response. But their roles in plant defense against RKNs are largely unclear. Here, we show that tomato E3 ubiquitin ligase RING1 interacts with COP9 Signalosome Subunit 4 (CSN4) which is essential for jasmonic acid (JA)-dependent basal defense against RKNs. Tissue-specific expression analysis showed that RING1 expression was the highest in tomato roots and the expression was significantly increased with RKN (Meloidogyne incognita) infection. Compared with the wild-type plants, the number of egg masses in roots significantly increased in the ring1 mutants, while RING1 overexpression conferred resistance against RKNs. Furthermore, RKN infection increased the accumulation of CSN4 protein in the roots of wild-type plants, which was largely compromised in the ring1 mutants but was enhanced in the RING1 overexpressing plants. The RKN-induced transcripts of JA biosynthetic and signaling genes as well as the accumulation of JA and JA-isoleucine were compromised in ring1 mutants but were increased in RING1 overexpressing plants. These results suggest that RING1 positively regulates JA-dependent basal defense against RKNs by interacting with CSN4 proteins.


Asunto(s)
Solanum lycopersicum , Tylenchoidea , Animales , Complejo del Señalosoma COP9/genética , Complejo del Señalosoma COP9/metabolismo , Solanum lycopersicum/metabolismo , Enfermedades de las Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tylenchoidea/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA