Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Dosim ; 46(2): e7-e11, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33246881

RESUMEN

Intensity-modulated proton therapy (IMPT) planning for the head and neck (HN) cancer often requires the use of the range shifter, which can increase the lateral penumbrae of the pencil proton beam in the patient, thus leading to an increase in unnecessary dose to the organs at risks (OARs) in proximity to the target volumes. The primary goal of the current study was to investigate the dosimetric benefits of utilizing beam-specific apertures for the IMPT HN cancer plans. The current retrospective study included computed tomography datasets of 10 unilateral HN cancer patients. The clinical target volume (CTV) was divided into low-risk CTV1 and high-risk CTV2. Total dose prescriptions to the CTV1 and CTV2 were 54 Gy(RBE) and 70 Gy(RBE), respectively, with a fractional dose of 2 Gy(RBE). All treatment plans were robustly optimized (patient setup uncertainty = 3 mm; range uncertainty = 3.5%) on the CTVs. For each patient, 2 sets of plans were generated: (1) without beam-specific aperture (WOBSA), and (2) with beam-specific aperture (WBSA). Specifically, both the WOBSA and WBSA of the given patient used identical beam angles, air gap, optimization structures, optimization constraints, and optimization settings. Target coverage and homogeneity index were comparable in both the WOBSA and WBSA plans with no statistical significance (p > 0.05). On average, the mean dose in WBSA plans was reduced by 12.1%, 2.9%, 3.0%, 3.8%, and 5.2% for the larynx, oral cavity, parotids, superior pharyngeal constrictor muscle, and inferior pharyngeal constrictor muscle, respectively. The dosimetric results of the OARs were found to be statistically significant (p < 0.05). The use of the beam-specific apertures did not deteriorate the coverage and homogeneity in the target volume and allowed for a reduction in mean dose to the OARs with an average difference up to 12.1%.


Asunto(s)
Neoplasias de Cabeza y Cuello , Terapia de Protones , Radioterapia de Intensidad Modulada , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
2.
JCO Glob Oncol ; 6: 1736-1745, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33180633

RESUMEN

PURPOSE: Proton beam therapy (PBT) has been a preferred modality in pediatric malignancies requiring radiotherapy. We report our preliminary experience of treating consecutive patients younger than 25 years with image-guided pencil beam scanning PBT from the first and only center on the Indian subcontinent. METHODS: Patients were selected for PBT on the basis of a multidisciplinary tumor board decision. Patient demographic data, as well as tumor and treatment-related characteristics of the cohort, were captured. Patient and treatment-related factors and their association with acute toxicities were analyzed using univariable and multivariable analyses. RESULTS: Forty-seven patients (27 with CNS and 20 with non-CNS tumors) with a median age of 9 years (range, 2-25 years) were evaluated. Most common diagnoses were ependymoma, rhabdomyosarcoma, and glioma. Seventy-seven percent of patients traveled more than 500 km, and 70% of them lived in metropolitan cities. Forty-nine percent of patients had recurrent disease at presentation, and 15% had received a previous course of radiation. The median dose delivered was 54.8 cobalt gray equivalents (range, 40.0-70.4 cobalt gray equivalents) to a median clinical target volume of 175 mL (range, 18.7-3,083.0 mL), with 34% of patients requiring concurrent chemotherapy (CCT). Acute grade 2 and grade 3 dermatitis, mucositis, and hematologic toxicity was noted in 45% and 2%, 34% and 0%, and 38% and 30% of patients, respectively. Grade 2 fatigue was noted in 26% of patients. On multivariable analysis, for CNS tumors, both CCT and craniospinal irradiation were independently associated with ≥ 2 grade hematologic toxicity, whereas among non-CNS tumors, a clinical target volume > 150 mL was associated with ≥ 2 grade fatigue, head and neck irradiation was associated with ≥ 2 grade mucositis, and CCT was associated with grade ≥ 2 hematologic toxicity. CONCLUSION: This study demonstrates safe implementation of a PBT program for children and young adults on the Indian subcontinent. Image-guided pencil beam scanning PBT in judiciously selected patients is feasible and can be delivered with acceptable acute toxicities.


Asunto(s)
Irradiación Craneoespinal , Ependimoma , Terapia de Protones , Rabdomiosarcoma , Adolescente , Adulto , Niño , Preescolar , Humanos , India , Terapia de Protones/efectos adversos , Adulto Joven
3.
J Med Phys ; 45(2): 59-65, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32831487

RESUMEN

PURPOSE: The purpose of this study is to evaluate the performance characteristic of volumetric image-guided dedicated-nozzle pencil beam-scanning proton therapy (PT) system. MATERIALS AND METHODS: PT system was characterized for electromechanical, image quality, and registration accuracy. Proton beam of 70.2-226.2 MeV was characterized for short- and long-term reproducibility in integrated depth dose; spot profile characteristics at different air gap and gantry angle; positioning accuracy of single and pattern of spot; dose linearity, reproducibility and consistency. All measurements were carried out using various X-ray and proton-beam specific detectors following standard protocols. RESULTS: All electro-mechanical, imaging, and safety parameters performed well within the specified tolerance limit. The image registration errors along three translation and three rotational axes were ≤0.5 mm and ≤0.2° for both point-based and intensity-based auto-registration. Distal range (R90) and distal dose fall-off (DDF) of 70.2-226.2 MeV proton beams were within 1 mm of calculated values based on the international commission on radiation units and measurements 49 and 0.0156× R90, respectively. The R90 and DDF were reproducible within a standard deviation of 0.05 g/cm2 during the first 8 months. Dose were linear from 18.5 (0.011 MU/spot) to 8405 (5 MU/spot) MU, reproducible within 0.5% in 5 consecutive days and consistent within 0.8% for full rotation. The cGy/MU for 70.2-226.2MeV was consistent within 0.5%. In-air X(Y) spot-sigma at isocenter varies from 2.96 (3.00) mm to 6.68 (6.52) mm for 70.2-226.2 MeV. Maximum variation of spot-sigma with air-gap of ±20 cm was ±0.36 mm (5.28%) and ±0.82 mm (±12.5%) along X- and Y-direction and 3.56% for full rotation. Relative spot positions were accurate within ±0.6 mm. The planned and delivered spot pattern of known complex geometry agreed with (γ%≤1) for 1% @ 1 mm >98% for representative five-proton energies at four gantry angle. CONCLUSION: The PT-system performed well within the expected accuracy level and consistent over a period of 8 months. The methodology and data presented here may help upcoming modern PT center during their crucial phase of commissioning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA