Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 15(694): eadg5562, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134153

RESUMEN

Bacterial bloodstream infections (BSIs) resulting in late-onset sepsis affect up to half of extremely preterm infants and have substantial morbidity and mortality. Bacterial species associated with BSIs in neonatal intensive care units (NICUs) commonly colonize the preterm infant gut microbiome. Accordingly, we hypothesized that the gut microbiome is a reservoir of BSI-causing pathogenic strains that increase in abundance before BSI onset. We analyzed 550 previously published fecal metagenomes from 115 hospitalized neonates and found that recent ampicillin, gentamicin, or vancomycin exposure was associated with increased abundance of Enterobacteriaceae and Enterococcaceae in infant guts. We then performed shotgun metagenomic sequencing on 462 longitudinal fecal samples from 19 preterm infants (cases) with BSI and 37 non-BSI controls, along with whole-genome sequencing of the BSI isolates. Infants with BSI caused by Enterobacteriaceae were more likely than infants with BSI caused by other organisms to have had ampicillin, gentamicin, or vancomycin exposure in the 10 days before BSI. Relative to controls, gut microbiomes of cases had increased relative abundance of the BSI-causing species and clustered by Bray-Curtis dissimilarity according to BSI pathogen. We demonstrated that 11 of 19 (58%) of gut microbiomes before BSI, and 15 of 19 (79%) of gut microbiomes at any time, harbored the BSI isolate with fewer than 20 genomic substitutions. Last, BSI strains from the Enterobacteriaceae and Enterococcaceae families were detected in multiple infants, indicating BSI-strain transmission. Our findings support future studies to evaluate BSI risk prediction strategies based on gut microbiome abundance in hospitalized preterm infants.


Asunto(s)
Infecciones Bacterianas , Microbioma Gastrointestinal , Sepsis , Lactante , Recién Nacido , Humanos , Recien Nacido Prematuro , Microbioma Gastrointestinal/genética , Unidades de Cuidado Intensivo Neonatal , Vancomicina/farmacología , Vancomicina/uso terapéutico , Sepsis/microbiología , Bacterias/genética , Gentamicinas , Ampicilina
2.
Genome Res ; 32(5): 986-1003, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35414589

RESUMEN

Mobile genetic elements with circular genomes play a key role in the evolution of microbial communities. Their circular genomes correspond to circular walks in metagenome graphs, and yet, assemblies derived from natural microbial communities produce graphs riddled with spurious cycles, complicating the accurate reconstruction of circular genomes. We present DomCycle, an algorithm that reconstructs likely circular genomes based on the identification of so-called "dominant" graph cycles. In the implementation, we leverage paired reads to bridge assembly gaps and scrutinize cycles through a nucleotide-level analysis, making the approach robust to misassembly artifacts. We validated the approach using simulated and real sequencing data. Application of DomCycle to 32 publicly available DNA shotgun sequence data sets from diverse natural environments led to the reconstruction of hundreds of circular mobile genomes. Clustering revealed 20 highly prevalent and cryptic plasmids that have clonal population structures with recent common ancestors. This method facilitates the study of microbial communities that evolve through horizontal gene transfer.


Asunto(s)
Metagenoma , Microbiota , Genotipo , Humanos , Metagenómica/métodos , Microbiota/genética , Plásmidos/genética , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA