Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1383135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045600

RESUMEN

Within the family Fabaceae, the genus Glycine is composed of two subgenera annuals (2n=40) and perennials. This life strategy transition may have differentially affected the evolution of various gene families. Its cultivated species G. max has high level of susceptibility to major pathogens including viruses, bacteria and fungi. Understanding nucleotide-binding domain leucine-rich repeat (NLR) genes evolution in soybean is of paramount importance due to their central role in plant immunity and their potential in improving disease resistance in soybean cultivars. In this study, we investigated the significance of this annual-perennial transition on the macroevolution of NLR genes in the genus Glycine. Our results reveal a remarkable distinction between annual species such as Glycine max and Glycine soja, which exhibit an expanded NLRome compared to perennial species (G. cyrtoloba, G. stenophita, G. dolichocarpa, G. falcata, G. syndetika, G. latifolia and G. tomentella). Our evolutionary timescale analysis pinpoints recent accelerated gene duplication events for this expansion, which occurred between 0.1 and 0.5 million years ago, driven predominantly by lineage-specific and terminal duplications. In contrast, perennials initially experienced significant contraction during the diploidisation phase following the Glycine-specific whole-genome duplication event (~10 million years ago). Despite the reduction in the NLRome, perennial lineages exhibit a unique and highly diversified repertoire of NLR genes with limited interspecies synteny. The investigation of gene gain and loss ratios revealed that this diversification resulted from the birth of novel genes following individual speciation events. Among perennials, G. latifolia, a well-known resistance resource, has the highest ratio of these novel genes in the tertiary gene pool. Our study suggests evolutionary mechanisms, including recombination and transposition, as potential drivers for the emergence of these novel genes. This study also provides evidence for the unbalanced expansion of the NLRome in the Dt subgenome compared with the At subgenome in the young allopolyploid G. dolichocarpa. To the best of our knowledge, this is the first study to investigate the effect of annuality and perenniality life transition on the evolution of NLR genes in the genus Glycine to identify its genomics resources for improving the resistance of soybean crop with global importance on the economy and food security.

2.
Sci Rep ; 13(1): 9305, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291184

RESUMEN

Arachis hypogaea is an allotetraploid crop widely grown in the world. Wild relatives of genus Arachis are the rich source of genetic diversity and high levels of resistance to combat pathogens and climate change. The accurate identification and characterization of plant resistance gene, nucleotide binding site leucine rich repeat receptor (NLRs) substantially contribute to the repertoire of resistances and improve production. In the current study, we have studied the evolution of NLR genes in genus Arachis and performed their comparative genomics among four diploids (A. duranensis, A. ipaensis, A. cardenasii, A. stenosperma) and two tetraploid (wild: A. monticola and domesticated: A. hypogaea) species. In total 521, 354, 284, 794, 654, 290 NLR genes were identified from A. cardenasii, A. stenosperma and A. duranensis, A. hypogaea, A. monticola and A. ipaensis respectively. Phylogenetic analysis and classification of NLRs revealed that they belong to 7 subgroups and specific subgroups have expanded in each genome leading towards divergent evolution. Gene gain and loss, duplication assay reveals that wild and domesticated tetraploids species have shown asymmetric expansion of NLRome in both sub-genome (AA and BB). A-subgenome of A. monticola exhibited significant contraction of NLRome while B-subgenome shows expansion and vice versa in case of A. hypogaea probably due to distinct natural and artificial selection pressure. In addition, diploid species A. cardenasii revealed the largest repertoire of NLR genes due to higher frequency of gene duplication and selection pressure. A. cardenasii and A. monticola can be regarded as putative resistance resources for peanut breeding program for introgression of novel resistance genes. Findings of this study also emphasize the application neo-diploids and polyploids due to higher quantitative expression of NLR genes. To the best of our knowledge, this is the first study that studied the effect of domestication and polyploidy on the evolution of NLR genes in genus Arachis to identify genomic resources for improving resistance of polyploid crop with global importance on economy and food security.


Asunto(s)
Arachis , Tetraploidía , Arachis/genética , Filogenia , Genoma de Planta , Fitomejoramiento , Poliploidía
3.
Genes (Basel) ; 14(2)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36833304

RESUMEN

Dalbergioid is a large group within the family Fabaceae that consists of diverse plant species distributed in distinct biogeographic realms. Here, we have performed a comprehensive study to understand the evolution of the nucleotide-binding leucine-rich repeats (NLRs) gene family in Dalbergioids. The evolution of gene families in this group is affected by a common whole genome duplication that occurred approximately 58 million years ago, followed by diploidization that often leads to contraction. Our study suggests that since diploidization, the NLRome of all groups of Dalbergioids is expanding in a clade-specific manner with fewer exceptions. Phylogenetic analysis and classification of NLRs revealed that they belong to seven subgroups. Specific subgroups have expanded in a species-specific manner, leading to divergent evolution. Among the Dalbergia clade, the expansion of NLRome in six species of the genus Dalbergia was observed, with the exception of Dalbergia odorifera, where a recent contraction of NLRome occurred. Similarly, members of the Pterocarpus clade genus Arachis revealed a large-scale expansion in the diploid species. In addition, the asymmetric expansion of NLRome was observed in wild and domesticated tetraploids after recent duplications in the genus Arachis. Our analysis strongly suggests that whole genome duplication followed by tandem duplication after divergence from a common ancestor of Dalbergioids is the major cause of NLRome expansion. To the best of our knowledge, this is the first ever study to provide insight toward the evolution of NLR genes in this important tribe. In addition, accurate identification and characterization of NLR genes is a substantial contribution to the repertoire of resistances among members of the Dalbergioids species.


Asunto(s)
Fabaceae , Genoma , Filogenia , Fabaceae/genética , Arachis/genética
4.
Antibiotics (Basel) ; 10(5)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063307

RESUMEN

The emergence of multidrug-resistant pathogens presents a global challenge for treating and preventing disease spread through zoonotic transmission. The water and foodborne Enterohaemorrhagic Escherichia coli (EHEC) are capable of causing intestinal and systemic diseases. The root cause of the emergence of these strains is their metabolic adaptation to environmental stressors, especially acidic pH. Acid treatment is desired to kill pathogens, but the protective mechanisms employed by EHECs cross-protect against antimicrobial peptides and thus facilitate opportunities for survival and pathogenesis. In this review, we have discussed the correlation between acid tolerance and antibiotic resistance, highlighting the identification of novel targets for potential production of antimicrobial therapeutics. We have also summarized the molecular mechanisms used by acid-adapted EHECs, such as the two-component response systems mediating structural modifications, competitive inhibition, and efflux activation that facilitate cross-protection against antimicrobial compounds. Moving beyond the descriptive studies, this review highlights low pH stress as an emerging player in the development of cross-protection against antimicrobial agents. We have also described potential gene targets for innovative therapeutic approaches to overcome the risk of multidrug-resistant diseases in healthcare and industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA