Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37514461

RESUMEN

Mixed polyolefin-based waste needs urgent attention to mitigate its negative impact on the environment. The separation of these plastics requires energy-intensive processes due to their similar densities. Additionally, these materials cannot be blended without compatibilizers, as they are inherently incompatible and immiscible. Herein, non-wettable microporous sheets from recycled polyethylene (PE) and polypropylene (PP) are presented. The methodology involves the application of phase separation and spin-casting techniques to obtain a bimodal porous structure, facilitating efficient oil-water separation. The resulting sheets have an immediate and equilibrium sorption uptake of 100 and 55 g/g, respectively, due to the presence of micro- and macro-pores, as revealed by SEM. Moreover, sheets possess enhanced crystallinity, as evidenced by XRD; hence, they retain their structure during sorption and desorption and are reusable with 98% efficiency. The anti-wetting properties of the sheets are enhanced by applying a silane coating, ensuring waterless sorption and a contact angle of 140°. These results highlight the importance of implementing sustainable solutions to recycle plastics and mitigate the oil spill problem.

2.
Polymers (Basel) ; 15(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37299359

RESUMEN

Bio-based polyols were obtained from the thermochemical liquefaction of two biomass feedstocks, pinewood and Stipa tenacissima, with conversion rates varying between 71.9 and 79.3 wt.%, and comprehensively characterized. They exhibit phenolic and aliphatic moieties displaying hydroxyl (OH) functional groups, as confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and nuclear magnetic resonance spectroscopy (NMR) analysis. The biopolyols obtained were successfully employed as a green raw material to produce bio-based polyurethane (BioPU) coatings on carbon steel substrates, using, as an isocyanate source, a commercial bio-based polyisocyanate-Desmodur® Eco N7300. The BioPU coatings were analyzed in terms of chemical structure, the extent of the reaction of the isocyanate species, thermal stability, hydrophobicity, and adhesion strength. They show moderate thermal stability at temperatures up to 100 °C, and a mild hydrophobicity, displaying contact angles between 68° and 86°. The adhesion tests reveal similar pull-off strength values (ca. 2.2 MPa) for the BioPU either prepared with pinewood and Stipa-derived biopolyols (BPUI and BPUII). Electrochemical impedance spectroscopy (EIS) measurements were carried out on the coated substrates for 60 days in 0.05 M NaCl solution. Good corrosion protection properties were achieved for the coatings, with particular emphasis on the coating prepared with the pinewood-derived polyol, which exhibited a low-frequency impedance modulus normalized for the coating thickness of 6.1 × 1010 Ω cm at the end of the 60 days test, three times higher than for coatings prepared with Stipa-derived biopolyols. The produced BioPU formulations show great potential for application as coatings, and for further modification with bio-based fillers and corrosion inhibitors.

3.
Biosensors (Basel) ; 11(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34821679

RESUMEN

The assessment of blood glucose levels is necessary for the diagnosis and management of diabetes. The accurate quantification of serum or plasma glucose relies on enzymatic and nonenzymatic methods utilizing electrochemical biosensors. Current research efforts are focused on enhancing the non-invasive detection of glucose in sweat with accuracy, high sensitivity, and stability. In this work, nanostructured mesoporous carbon coupled with glucose oxidase (GOx) increased the direct electron transfer to the electrode surface. A mixed alloy of CuNi nanoparticle-coated mesoporous carbon (CuNi-MC) was synthesized using a hydrothermal process followed by annealing at 700 °C under the flow of argon gas. The prepared catalyst's crystal structure and morphology were explored using X-ray diffraction and high-resolution transmission electron microscopy. The electrocatalytic activity of the as-prepared catalyst was investigated using cyclic voltammetry (CV) and amperometry. The findings show an excellent response time of 4 s and linear range detection from 0.005 to 0.45 mM with a high electrode sensitivity of 11.7 ± 0.061 mA mM cm-2 in a selective medium.


Asunto(s)
Técnicas Biosensibles , Carbono , Glucosa/análisis , Nanopartículas del Metal , Cobre , Técnicas Electroquímicas , Electrodos , Glucosa Oxidasa , Níquel
4.
Nanomaterials (Basel) ; 10(4)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326038

RESUMEN

The utilization of self-healing cerium dioxide nanoparticles (CeO2), modified with organic corrosion inhibitors (dodecylamine (DDA) and n-methylthiourea (NMTU)), in epoxy coating is an efficient strategy for enhancing the protection of the epoxy coating and increasing its lifetime. Fourier transform infrared (FTIR) spectroscopy analysis was used to confirm the loading and presence of inhibitors in the nanoparticles. Thermal gravimetric analysis (TGA) measurement studies revealed the amount of 25% and 29.75% w/w for NMTU and DDA in the nanoparticles, respectively. The pH sensitive and self-release behavior of modified CeO2 nanoparticles is confirmed through UV-vis spectroscopy and Zeta potential. It was observed, through scanning electron microscopy (SEM), that a protective layer had been formed on the defect site separating the steel surface from the external environment and healed the artificially created scratch. This protective film played a vital role in the corrosion inhibition of steel by preventing the aggressiveness of Cl- in the solution. Electrochemical impedance spectroscopy (EIS) measurements exhibited the exceptional corrosion inhibition efficiency, reaching 99.8% and 95.7% for the modified coating with DDA and NMTU, respectively, after five days of immersion time.

5.
Polymers (Basel) ; 11(9)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540527

RESUMEN

Multifunctional nanocomposite coatings were synthesized by reinforcing a polymeric matrix with halloysite nanotubes (HNTs) loaded with corrosion inhibitor (NaNO3) and urea formaldehyde microcapsules (UFMCs) encapsulated with a self-healing agent (linseed oil (LO)). The developed polymeric nanocomposite coatings were applied on the polished mild steel substrate using the doctor's blade technique. The structural (FTIR, XPS) and thermogravimetric (TGA) analyses reveal the loading of HNTs with NaNO3 and encapsulation of UFMCs with linseed oil. It was observed that self-release of the inhibitor from HNTs in response to pH change was a time dependent process. Nanocomposite coatings demonstrate decent self-healing effects in response to the external controlled mechanical damage. Electrochemical impedance spectroscopic analysis (EIS) indicates promising anticorrosive performance of novel nanocomposite coatings. Observed corrosion resistance of the developed smart coatings may be attributed to the efficient release of inhibitor and self-healing agent in response to the external stimuli. Polymeric nanocomposite coatings modified with multifunctional species may offer suitable corrosion protection of steel in the oil and gas industry.

6.
Phys Chem Chem Phys ; 18(5): 3929-35, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26765283

RESUMEN

The development of secondary batteries based on abundant and cheap elements is vital. Among various alternatives to conventional lithium-ion batteries, sodium-ion batteries (SIBs) are promising due to the abundant resources and low cost of sodium. While there are many challenges associated with the SIB system, cathode is an important factor in determining the electrochemical performance of this battery system. Accordingly, ongoing research in the field of SIBs is inclined towards the development of safe, cost effective cathode materials having improved performance. In particular, pyrophosphate cathodes have recently demonstrated decent electrochemical performance and thermal stability. Herein, we report the synthesis, electrochemical properties, and thermal behavior of a novel Na2Fe0.5Mn0.5P2O7 cathode for SIBs. The material was synthesized through a solid state process. The structural analysis reveals that the mixed substitution of manganese and iron has resulted in a triclinic crystal structure (P1[combining macron] space group). Galvanostatic charge/discharge measurements indicate that Na2Fe0.5Mn0.5P2O7 is electrochemically active with a reversible capacity of ∼80 mA h g(-1) at a C/20 rate with an average redox potential of 3.2 V. (vs. Na/Na(+)). It is noticed that 84% of initial capacity is preserved over 90 cycles showing promising cyclability. It is also noticed that the rate capability of Na2Fe0.5Mn0.5P2O7 is better than Na2MnP2O7. Ex situ and CV analyses indicate that Na2Fe0.5Mn0.5P2O7 undergoes a single phase reaction rather than a biphasic reaction due to different Na coordination environment and different Na site occupancy when compared to other pyrophosphate materials (Na2FeP2O7 and Na2MnP2O7). Thermogravimetric analysis (25-550 °C) confirms good thermal stability of Na2Fe0.5Mn0.5P2O7 with only 2% weight loss. Owing to promising electrochemical properties and decent thermal stability, Na2Fe0.5Mn0.5P2O7, can be an attractive cathode for SIBs.

7.
Nano Lett ; 14(8): 4418-25, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25007002

RESUMEN

Utilizing the unparalleled theoretical capacity of sulfur reaching 1675 mAh/g, lithium-sulfur (Li-S) batteries have been counted as promising enablers of future lithium ion battery (LIB) applications requiring high energy densities. Nevertheless, most sulfur electrodes suffer from insufficient cycle lives originating from dissolution of lithium polysulfides. As a fundamental solution to this chronic shortcoming, herein, we introduce a hierarchical porous carbon structure in which meso- and macropores are surrounded by outer micropores. Sulfur was infiltrated mainly into the inner meso- and macropores, while the outer micropores remained empty, thus serving as a "barricade" against outward dissolution of long-chain lithium polysulfides. On the basis of this systematic design, the sulfur electrode delivered 1412 mAh/g sulfur with excellent capacity retention of 77% after 500 cycles. Also, a control study suggests that even when sulfur is loaded into the outer micropores, the robust cycling performance is preserved by engaging small sulfur crystal structures (S2-4). Furthermore, the hierarchical porous carbon was produced in ultrahigh speed by scalable spray pyrolysis. Each porous carbon particle was synthesized through 5 s of carrier gas flow in a reaction tube.

8.
J Am Chem Soc ; 135(7): 2787-92, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23350583

RESUMEN

Sodium ion batteries (SIBs) have many advantages such as the low price and abundance of sodium raw materials that are suitable for large-scale energy storage applications. Herein, we report an Mn-based pyrophosphate, Na(2)MnP(2)O(7), as a new SIB cathode material. Unlike most Mn-based cathode materials, which suffer severely from sluggish kinetics, Na(2)MnP(2)O(7) exhibits good electrochemical activity at ~3.8 V vs Na/Na(+) with a reversible capacity of 90 mAh g(-1) at room temperature. It also shows an excellent cycling and rate performance: 96% capacity retention after 30 cycles and 70% capacity retention at a c-rate increase from 0.05C to 1C. These electrochemical activities of the Mn-containing cathode material even at room temperature with relatively large particle sizes are remarkable considering an almost complete inactivity of the Li counterpart, Li(2)MnP(2)O(7). Using first-principles calculations, we find that the significantly enhanced kinetics of Na(2)MnP(2)O(7) is mainly due to the locally flexible accommodation of Jahn-Teller distortions aided by the corner-sharing crystal structure in triclinic Na(2)MnP(2)O(7). By contrast, in monoclinic Li(2)MnP(2)O(7), the edge-sharing geometry causes multiple bonds to be broken and formed during charging reaction with a large degree of atomic rearrangements. We expect that the similar computational strategy to analyze the atomic rearrangements can be used to predict the kinetics behavior when exploring new cathode candidates.

9.
Sci Rep ; 2: 704, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23050088

RESUMEN

Lithium-ion batteries, which have been widely used to power portable electronic devices, are on the verge of being applied to new automobile applications. To expand this emerging market, however, an electrode that combines fast charging capability, long-term cycle stability, and high energy density is needed. Herein, we report a novel layered lithium vanadium fluorophosphate, Li(1.1)Na(0.4)VPO(4.8)F(0.7), as a promising positive electrode contender. This new material has two-dimensional lithium pathways and is capable of reversibly releasing and reinserting ~1.1 Li(+) ions at an ideal 4 V (versus Li(+)/Li) to give a capacity of ~156 mAh g(-1) (energy density of 624 Wh kg(-1)). Moreover, outstanding capacity retentions of 98% and 96% after 100 cycles were achieved at 60°C and room temperature, respectively. Unexpectedly high rate capability was delivered for both charge and discharge despite the large particle size (a few microns), which promises further enhancement of power density with proper nano-engineering.

10.
J Am Chem Soc ; 134(28): 11740-8, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22720717

RESUMEN

As an attempt to develop lithium ion batteries with excellent performance, which is desirable for a variety of applications including mobile electronics, electrical vehicles, and utility grids, the battery community has continuously pursued cathode materials that function at higher potentials with efficient kinetics for lithium insertion and extraction. By employing both experimental and theoretical tools, herein we report multicomponent pyrophosphate (Li(2)MP(2)O(7), M = Fe(1/3)Mn(1/3)Co(1/3)) cathode materials with novel and advantageous properties as compared to the single-component analogues and other multicomponent polyanions. Li(2)Fe(1/3)Mn(1/3)Co(1/3)P(2)O(7) is formed on the basis of a solid solution among the three individual transition-metal-based pyrophosphates. The unique crystal structure of pyrophosphate and the first principles calculations show that different transition metals have a tendency to preferentially occupy either octahedral or pyramidal sites, and this site-specific transition metal occupation leads to significant improvements in various battery properties: a single-phase mode for Li insertion/extraction, improved cell potentials for Fe(2+)/Fe(3+) (raised by 0.18 eV) and Co(2+)/Co(3+) (lowered by 0.26 eV), and increased activity for Mn(2+)/Mn(3+) with significantly reduced overpotential. We reveal that the favorable energy of transition metal mixing and the sequential redox reaction for each TM element with a sufficient redox gap is the underlying physical reason for the preferential single-phase mode of Li intercalation/deintercalation reaction in pyrophosphate, a general concept that can be applied to other multicomponent systems. Furthermore, an extremely small volume change of ~0.7% between the fully charged and discharged states and the significantly enhanced thermal stability are observed for the present material, the effects unseen in previous multicomponent battery materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA