Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 290(5): 2854-69, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25527503

RESUMEN

L-type Ca(2+) channels play a critical role in cardiac rhythmicity. These ion channels are oligomeric complexes formed by the pore-forming CaVα1 with the auxiliary CaVß and CaVα2δ subunits. CaVα2δ increases the peak current density and improves the voltage-dependent activation gating of CaV1.2 channels without increasing the surface expression of the CaVα1 subunit. The functional impact of genetic variants of CACNA2D1 (the gene encoding for CaVα2δ), associated with shorter repolarization QT intervals (the time interval between the Q and the T waves on the cardiac electrocardiogram), was investigated after recombinant expression of the full complement of L-type CaV1.2 subunits in human embryonic kidney 293 cells. By performing side-by-side high resolution flow cytometry assays and whole-cell patch clamp recordings, we revealed that the surface density of the CaVα2δ wild-type protein correlates with the peak current density. Furthermore, the cell surface density of CaVα2δ mutants S755T, Q917H, and S956T was not significantly different from the cell surface density of the CaVα2δ wild-type protein expressed under the same conditions. In contrast, the cell surface expression of CaVα2δ D550Y, CaVα2δ S709N, and the double mutant D550Y/Q917H was reduced, respectively, by ≈30-33% for the single mutants and by 60% for the latter. The cell surface density of D550Y/Q917H was more significantly impaired than protein stability, suggesting that surface trafficking of CaVα2δ was disrupted by the double mutation. Co-expression with D550Y/Q917H significantly decreased CaV1.2 currents as compared with results obtained with CaVα2δ wild type. It is concluded that D550Y/Q917H reduced inward Ca(2+) currents through a defect in the cell surface trafficking of CaVα2δ. Altogether, our results provide novel insight in the molecular mechanism underlying the modulation of CaV1.2 currents by CaVα2δ.


Asunto(s)
Canales de Calcio Tipo L/genética , Muerte Súbita Cardíaca/etiología , Mutación Missense/genética , Animales , Canales de Calcio Tipo L/metabolismo , Humanos , Conejos , Ratas
2.
J Biol Chem ; 287(39): 32835-47, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22846999

RESUMEN

Ca(V)ß subunits are formed by a Src homology 3 domain and a guanylate kinase-like (GK) domain connected through a variable HOOK domain. Complete deletion of the Src homology 3 domain (75 residues) as well as deletion of the HOOK domain (47 residues) did not alter plasma membrane density of Ca(V)2.3 nor its typical activation gating. In contrast, six-residue deletions in the GK domain disrupted cell surface trafficking and functional expression of Ca(V)2.3. Mutations of residues known to carry nanomolar affinity binding in the GK domain of Ca(V)ß (P175A, P179A, M195A, M196A, K198A, S295A, R302G, R307A, E339G, N340G, and A345G) did not significantly alter cell surface targeting or gating modulation of Ca(V)2.3. Nonetheless, mutations of a quartet of leucine residues (either single or multiple mutants) in the α3, α6, ß10, and α9 regions of the GK domain were found to significantly impair cell surface density of Ca(V)2.3 channels. Furthermore, the normalized protein density of Ca(V)2.3 was nearly abolished with the quadruple Ca(V)ß3 Leu mutant L200G/L303G/L337G/L342G. Altogether, our observations suggest that the four leucine residues in Ca(V)ß3 form a hydrophobic pocket surrounding key residues in the α-interacting domain of Ca(V)2.3. This interaction appears to play an essential role in conferring Ca(V)ß-induced modulation of the protein density of Ca(V)α1 subunits in Ca(V)2 channels.


Asunto(s)
Canales de Calcio Tipo R/metabolismo , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Mutación Missense , Sustitución de Aminoácidos , Animales , Canales de Calcio Tipo R/genética , Proteínas de Transporte de Catión/genética , Membrana Celular/genética , Células HEK293 , Humanos , Leucina/genética , Leucina/metabolismo , Estructura Secundaria de Proteína , Ratas , Dominios Homologos src
3.
Biochim Biophys Acta ; 1824(9): 1045-57, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22633975

RESUMEN

Ca(v)2.3 containing voltage-activated Ca(2+) channels are expressed in excitable cells and trigger neurotransmitter and peptide-hormone release. Their expression remote from the fast release sites leads to the accumulation of presynaptic Ca(2+) which can both, facilitate and inhibit the influx of Ca(2+) ions through Ca(v)2.3. The facilitated Ca(2+) influx was recently related to hippocampal postsynaptic facilitation and long term potentiation. To analyze Ca(2+) mediated modulation of cellular processes more in detail, protein partners of the carboxy terminal tail of Ca(v)2.3 were identified by yeast-2-hybrid screening, leading in two human cell lines to the detection of a novel, extended and rarely occurring splice variant of calmodulin-2 (CaM-2), called CaM-2-extended (CaM-2-ext). CaM-2-ext interacts biochemically with the C-terminus of Ca(v)2.3 similar to the classical CaM-2 as shown by co-immunoprecipitation. Functionally, only CaM-2-ext reduces whole cell inward currents significantly. The insertion of the novel 46 nts long exon and the consecutive expression of CaM-2-ext must be dependent on a new upstream translation initiation site which is only rarely used in the tested human cell lines. The structure of the N-terminal extension is predicted to be more hydrophobic than the remaining CaM-2-ext protein, suggesting that it may help to dock it to the lipophilic membrane surrounding.


Asunto(s)
Empalme Alternativo , Canales de Calcio Tipo R/metabolismo , Calmodulina/metabolismo , Proteínas de Transporte de Catión/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Calcio/metabolismo , Canales de Calcio Tipo R/química , Canales de Calcio Tipo R/genética , Calmodulina/química , Calmodulina/genética , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Línea Celular , Células HEK293 , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA