Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762029

RESUMEN

Although the safety and efficacy of COVID-19 vaccines in older people are critical to their success, little is known about their immunogenicity among elderly residents of long-term care facilities (LTCFs). A single-center prospective cohort study was conducted: a total IgG antibody titer, neutralizing antibodies against Wild-type, Delta Plus, and Omicron BA.2 variants and T cell response, were measured eight months after the second dose of BNT162b2 vaccine (T0) and at least 15 days after the booster (T1). Forty-nine LTCF residents, with a median age of 84.8 ± 10.6 years, were enrolled. Previous COVID-19 infection was documented in 42.9% of the subjects one year before T0. At T1, the IgG titers increased up to 10-fold. This ratio was lower in the subjects with previous COVID-19 infection. At T1, IgG levels were similar in both groups. The neutralizing activity against Omicron BA.2 was significantly lower (65%) than that measured against Wild-type and Delta Plus (90%). A significant increase of T cell-specific immune response was observed after the booster. Frailty, older age, sex, cognitive impairment, and comorbidities did not affect antibody titers or T cell response. In the elderly sample analyzed, the BNT162b2 mRNA COVID-19 vaccine produced immunogenicity regardless of frailty.


Asunto(s)
COVID-19 , Fragilidad , Anciano , Humanos , Anciano de 80 o más Años , Vacunas contra la COVID-19 , Vacuna BNT162 , Estudios Prospectivos , COVID-19/prevención & control , Inmunoglobulina G , Inmunidad Celular
2.
Biomed J ; 46(5): 100631, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37467968

RESUMEN

Human nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) include a large family of proteins that have important functions in basic physio-pathological processes like inflammation, cell death and regulation of transcription of key molecules for the homeostasis of the immune system. They are all characterized by a common backbone structure (the STAND ATPase module consisting in a nucleotide-binding domain (NBD), an helical domain 1 (HD1) and a winged helix domain (WHD), used by both prokaryotes and eukaryotes as defense mechanism. In this review, we will focus on the MHC class II transactivator (CIITA), the master regulator of MHC class II (MHC-II) gene expression and the founding member of NLR. Although a consistent part of the described NLR family components is often recalled as innate or intrinsic immune sensors, CIITA in fact occupies a special place as a unique example of regulator of both intrinsic and adaptive immunity. The description of the discovery of CIITA and the genetic and molecular characterization of its expression will be followed by the most recent studies that have unveiled this dual role of CIITA, key molecule in intrinsic immunity as restriction factor for human retroviruses and precious tool to induce the expression of MHC-II molecules in cancer cells, rendering them potent surrogate antigen presenting cells (APC) for their own tumor antigens.


Asunto(s)
Neoplasias , Transactivadores , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inmunoterapia , Nucleótidos , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA