Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transl Vis Sci Technol ; 13(8): 30, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39163016

RESUMEN

Purpose: Central retinal artery occlusion (CRAO) is an ocular emergency that results from acute blockage of the blood supply to the retina and leads to a sudden vision loss. Other forms of ischemic retinopathies include diabetic retinopathy (DR), which involves chronic retinal ischemia and remains the leading cause of blindness in working-age adults. This study is the first to conduct a proteomic analysis of aqueous humor (AH) from patients with CRAO with a comparative analysis using vitreous humor (VH) samples from patients with DR. Methods: AH samples were collected from 10 patients with CRAO undergoing paracentesis and 10 controls undergoing cataract surgery. VH samples were collected from 10 patients with DR and 10 non-diabetic controls undergoing pars plana vitrectomy (PPV). Samples were analyzed using mass spectrometry. Results: Compared with controls, AH levels of 36 differentially expressed proteins (DEPs) were identified in patients with CRAO. Qiagen Ingenuity Pathway Analysis (IPA) revealed 11 proteins linked to ophthalmic diseases. Notably, enolase 2, a glycolysis enzyme isoform primarily expressed in neurons, was upregulated, suggesting neuronal injury and enzyme release. Additionally, clusterin, a protective glycoprotein, was downregulated. ELISA was conducted to confirm proteomics data. VH samples from patients with DR exhibited changes in a distinct set of proteins, including ones previously reported in the literature. Conclusions: The study provides novel insights into CRAO pathophysiology with multiple hits identified. Proteomic results differed between DR and CRAO studies, likely due to the different pathophysiology and disease duration. Translational Relevance: This is the first proteomic analysis of CRAO AH, with the potential to identify future therapeutic targets.


Asunto(s)
Humor Acuoso , Proteómica , Oclusión de la Arteria Retiniana , Humanos , Humor Acuoso/metabolismo , Humor Acuoso/química , Proteómica/métodos , Oclusión de la Arteria Retiniana/metabolismo , Masculino , Femenino , Anciano , Persona de Mediana Edad , Proteínas del Ojo/metabolismo , Cuerpo Vítreo/metabolismo , Vitrectomía , Fosfopiruvato Hidratasa/metabolismo , Paracentesis , Espectrometría de Masas
2.
J Neuroinflammation ; 21(1): 170, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997746

RESUMEN

Ischemia-induced retinopathy is a hallmark finding of common visual disorders including diabetic retinopathy (DR) and central retinal artery and vein occlusions. Treatments for ischemic retinopathies fail to improve clinical outcomes and the design of new therapies will depend on understanding the underlying disease mechanisms. Histone deacetylases (HDACs) are an enzyme class that removes acetyl groups from histone and non-histone proteins, thereby regulating gene expression and protein function. HDACs have been implicated in retinal neurovascular injury in preclinical studies in which nonspecific HDAC inhibitors mitigated retinal injury. Histone deacetylase 3 (HDAC3) is a class I histone deacetylase isoform that plays a central role in the macrophage inflammatory response. We recently reported that myeloid cells upregulate HDAC3 in a mouse model of retinal ischemia-reperfusion (IR) injury. However, whether this cellular event is an essential contributor to retinal IR injury is unknown. In this study, we explored the role of myeloid HDAC3 in ischemia-induced retinal neurovascular injury by subjecting myeloid-specific HDAC3 knockout (M-HDAC3 KO) and floxed control mice to retinal IR. The M-HDAC3 KO mice were protected from retinal IR injury as shown by the preservation of inner retinal neurons, vascular integrity, and retinal thickness. Electroretinography confirmed that this neurovascular protection translated to improved retinal function. The retinas of M-HDAC3 KO mice also showed less proliferation and infiltration of myeloid cells after injury. Interestingly, myeloid cells lacking HDAC3 more avidly engulfed apoptotic cells in vitro and after retinal IR injury in vivo compared to wild-type myeloid cells, suggesting that HDAC3 hinders the reparative phagocytosis of dead cells, a process known as efferocytosis. Further mechanistic studies indicated that although HDAC3 KO macrophages upregulate the reparative enzyme arginase 1 (A1) that enhances efferocytosis, the inhibitory effect of HDAC3 on efferocytosis is not solely dependent on A1. Finally, treatment of wild-type mice with the HDAC3 inhibitor RGFP966 ameliorated the retinal neurodegeneration and thinning caused by IR injury. Collectively, our data show that HDAC3 deletion enhances macrophage-mediated efferocytosis and protects against retinal IR injury, suggesting that inhibiting myeloid HDAC3 holds promise as a novel therapeutic strategy for preserving retinal integrity after ischemic insult.


Asunto(s)
Histona Desacetilasas , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Ratones , Células Mieloides/metabolismo , Fagocitosis/efectos de los fármacos , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Enfermedades de la Retina/etiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Retina/metabolismo , Retina/patología , Eferocitosis
3.
J Neuroinflammation ; 21(1): 65, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454477

RESUMEN

Myeloid cells including microglia and macrophages play crucial roles in retinal homeostasis by clearing cellular debris and regulating inflammation. These cells are activated in several blinding ischemic retinal diseases including diabetic retinopathy, where they may exert both beneficial and detrimental effects on neurovascular function and angiogenesis. Myeloid cells impact the progression of retinal pathologies and recent studies suggest that targeting myeloid cells is a promising therapeutic strategy to mitigate diabetic retinopathy and other ischemic retinal diseases. This review summarizes the recent advances in our understanding of the role of microglia and macrophages in retinal diseases and focuses on the effects of myeloid cells on neurovascular injury and angiogenesis in ischemic retinopathies. We highlight gaps in knowledge and advocate for a more detailed understanding of the role of myeloid cells in retinal ischemic injury to fully unlock the potential of targeting myeloid cells as a therapeutic strategy for retinal ischemia.


Asunto(s)
Retinopatía Diabética , Enfermedades de la Retina , Humanos , Enfermedades de la Retina/patología , Retina/patología , Macrófagos/patología , Isquemia/patología
4.
Cell Death Dis ; 14(9): 621, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735154

RESUMEN

The enzyme arginase 1 (A1) hydrolyzes the amino acid arginine to form L-ornithine and urea. Ornithine is further converted to polyamines by the ornithine decarboxylase (ODC) enzyme. We previously reported that deletion of myeloid A1 in mice exacerbates retinal damage after ischemia/reperfusion (IR) injury. Furthermore, treatment with A1 protects against retinal IR injury in wild-type mice. PEG-A1 also mitigates the exaggerated inflammatory response of A1 knockout (KO) macrophages in vitro. Here, we sought to identify the anti-inflammatory pathway that confers macrophage A1-mediated protection against retinal IR injury. Acute elevation of intraocular pressure was used to induce retinal IR injury in mice. A multiplex cytokine assay revealed a marked increase in the inflammatory cytokines interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) in the retina at day 5 after IR injury. In vitro, blocking the A1/ODC pathway augmented IL-1ß and TNF-α production in stimulated macrophages. Furthermore, A1 treatment attenuated the stimulated macrophage metabolic switch to a pro-inflammatory glycolytic phenotype, whereas A1 deletion had the opposite effect. Screening for histone deacetylases (HDACs) which play a role in macrophage inflammatory response showed that A1 deletion or ODC inhibition increased the expression of HDAC3. We further showed the involvement of HDAC3 in the upregulation of TNF-α but not IL-1ß in stimulated macrophages deficient in the A1/ODC pathway. Investigating HDAC3 KO macrophages showed a reduced inflammatory response and a less glycolytic phenotype upon stimulation. In vivo, HDAC3 co-localized with microglia/macrophages at day 2 after IR in WT retinas and was further increased in A1-deficient retinas. Collectively, our data provide initial evidence that A1 exerts its anti-inflammatory effect in macrophages via ODC-mediated suppression of HDAC3 and IL-1ß. Collectively we propose that interventions that augment the A1/ODC pathway and inhibit HDAC3 may confer therapeutic benefits for the treatment of retinal ischemic diseases.


Asunto(s)
Daño por Reperfusión , Enfermedades de la Retina , Animales , Ratones , Arginasa/genética , Citocinas , Isquemia , Células Mieloides , Ornitina , Ornitina Descarboxilasa , Factor de Necrosis Tumoral alfa
5.
Bio Protoc ; 13(16): e4745, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37638294

RESUMEN

Myeloid cells, specifically microglia and macrophages, are activated in retinal diseases and can improve or worsen retinopathy outcomes based on their inflammatory phenotype. However, assessing the myeloid cell response after retinal injury in mice remains challenging due to the small tissue size and the challenges of distinguishing microglia from infiltrating macrophages. In this protocol paper, we describe a flow cytometry-based protocol to assess retinal microglia/macrophage and their inflammatory phenotype after injury. The protocol is amenable to the incorporation of other markers of interest to other researchers. Key features This protocol describes a flow cytometry-based method to analyze the myeloid cell response in retinopathy mouse models. The protocol can distinguish between microglia- and monocyte-derived macrophages. It can be modified to incorporate markers of interest. We show representative results from three different retinopathy models, namely ischemia-reperfusion injury, endotoxin-induced uveitis, and oxygen-induced retinopathy.

6.
Sci Adv ; 9(10): eadd1101, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36888713

RESUMEN

Lipofuscin is an autofluorescent (AF) pigment formed by lipids and misfolded proteins, which accumulates in postmitotic cells with advanced age. Here, we immunophenotyped microglia in the brain of old C57BL/6 mice (>18 months old) and demonstrate that in comparison to young mice, one-third of old microglia are AF, characterized by profound changes in lipid and iron content, phagocytic activity, and oxidative stress. Pharmacological depletion of microglia in old mice eliminated the AF microglia following repopulation and reversed microglial dysfunction. Age-related neurological deficits and neurodegeneration after traumatic brain injury (TBI) were attenuated in old mice lacking AF microglia. Furthermore, increased phagocytic activity, lysosomal burden, and lipid accumulation in microglia persisted for up to 1 year after TBI, were modified by APOE4 genotype, and chronically driven by phagocyte-mediated oxidative stress. Thus, AF may reflect a pathological state in aging microglia associated with increased phagocytosis of neurons and myelin and inflammatory neurodegeneration that can be further accelerated by TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Ratones , Microglía/metabolismo , Ratones Endogámicos C57BL , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Encéfalo/metabolismo , Fenotipo , Lípidos
7.
Brain Behav Immun ; 100: 10-24, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34808293

RESUMEN

Sepsis-associated encephalopathy (SAE) occurs in sepsis survivors and is associated with breakdown of the blood-brain barrier (BBB), brain inflammation, and neurological dysfunction. We have previously identified a group of extracellular microRNAs (ex-miRNAs), such as miR-146a-5p, that were upregulated in the plasma of septic mice and human, and capable of inducing potent pro-inflammatory cytokines and complements. Here, we established a clinically relevant mouse model of SAE and investigated the role of extracellular miRNAs and their sensor Toll-like receptor 7 (TLR7) in brain inflammation and neurological dysfunction. We observed BBB disruption and a profound neuroinflammatory responses in the brain for up to 14 days post-sepsis; these included increased pro-inflammatory cytokines production, microglial expansion, and peripheral leukocyte accumulation in the CNS. In a battery of neurobehavioral tests, septic mice displayed impairment of motor coordination and neurological function. Sepsis significantly increased plasma RNA and miRNA levels for up to 7 days, such as miR-146a-5p. Exogenously added miR-146a-5p induces innate immune responses in both cultured microglia/astrocytes and the intact brain via a TLR7-dependent manner. Moreover, mice genetically deficient of miR-146a showed reduced accumulation of monocytes and neutrophils in the brain compared to WT after sepsis. Finally, ablation of TLR7 in the TLR7-/- mice preserved BBB integrity, reduced microglial expansion and leukocyte accumulation, and attenuated GSK3ß signaling in the brain, but did not improve neurobehavioral recovery following sepsis. Taken together, these data establish an important role of extracellular miRNA and TLR7 sensing in sepsis-induced brain inflammation.


Asunto(s)
MicroARNs , Sepsis , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Inmunidad Innata , Glicoproteínas de Membrana , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
8.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32516998

RESUMEN

Mesenchymal stem cells (MSCs) are emerging as an attractive approach for restorative medicine in central nervous system (CNS) diseases and injuries, such as traumatic brain injury (TBI), due to their relatively easy derivation and therapeutic effect following transplantation. However, the long-term survival of the grafted cells and therapeutic efficacy need improvement. Here, we review the recent application of MSCs in TBI treatment in preclinical models. We discuss the genetic modification approaches designed to enhance the therapeutic potency of MSCs for TBI treatment by improving their survival after transplantation, enhancing their homing abilities and overexpressing neuroprotective and neuroregenerative factors. We highlight the latest preclinical studies that have used genetically modified MSCs for TBI treatment. The recent developments in MSCs' biology and potential TBI therapeutic targets may sufficiently improve the genetic modification strategies for MSCs, potentially bringing effective MSC-based therapies for TBI treatment in humans.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/etiología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Tratamiento Basado en Trasplante de Células y Tejidos , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Terapia Genética , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Neurogénesis
9.
Int J Nanomedicine ; 15: 97-114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021167

RESUMEN

BACKGROUND: Regenerative medicine field is still lagging due to the lack of adequate knowledge regarding the homing of therapeutic cells towards disease sites, tracking of cells during treatment, and monitoring the biodistribution and fate of cells. Such necessities require labeling of cells with imaging agents that do not alter their biological characteristics, and development of suitable non-invasive imaging modalities. PURPOSE: We aimed to develop, characterize, and standardize a facile labeling strategy for engineered mesenchymal stem cells without altering their viability, secretion of FGF21 protein (neuroprotective), and differentiation capabilities for non-invasive longitudinal MRI monitoring in live mice brains with high sensitivity. METHODS: We compared the labeling efficiency of different commercial iron oxide nanoparticles towards our stem cells and determined the optimum labeling conditions using prussian blue staining, confocal microscopy, transmission electron microscopy, and flow cytometry. To investigate any change in biological characteristics of labeled cells, we tested their viability by WST-1 assay, expression of FGF21 by Western blot, and adipogenic and osteogenic differentiation capabilities. MRI contrast-enhancing properties of labeled cells were investigated in vitro using cell-agarose phantoms and in mice brains transplanted with the therapeutic stem cells. RESULTS: We determined the nanoparticles that showed best labeling efficiency and least extracellular aggregation. We further optimized their labeling conditions (nanoparticles concentration and media supplementation) to achieve high cellular uptake and minimal extracellular aggregation of nanoparticles. Cell viability, expression of FGF21 protein, and differentiation capabilities were not impeded by nanoparticles labeling. Low number of labeled cells produced strong MRI signal decay in phantoms and in live mice brains which were visible for 4 weeks post transplantation. CONCLUSION: We established a standardized magnetic nanoparticle labeling platform for stem cells that were monitored longitudinally with high sensitivity in mice brains using MRI for regenerative medicine applications.


Asunto(s)
Encéfalo/diagnóstico por imagen , Factores de Crecimiento de Fibroblastos/metabolismo , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/fisiología , Adipogénesis , Animales , Diferenciación Celular , Medios de Contraste , Compuestos Férricos/química , Factores de Crecimiento de Fibroblastos/genética , Citometría de Flujo , Ingeniería Genética , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Osteogénesis , Distribución Tisular
10.
J Neurotrauma ; 37(1): 14-26, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31298621

RESUMEN

Traumatic brain injury (TBI) is a progressive and complex pathological condition that results in multiple adverse consequences, including impaired learning and memory. Transplantation of mesenchymal stem cells (MSCs) has produced limited benefits in experimental TBI models. Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator that has neuroprotective effects, promotes remyelination, enhances angiogenesis, and elongates astrocytic processes. In this study, MSCs were genetically engineered to overexpress FGF21 in order to improve their efficacy in TBI. MSCs overexpressing FGF21 (MSC-FGF21) were transplanted to mouse brain by intracerebroventricular injection 24 h after TBI was induced by controlled cortical impact (CCI). Hippocampus-dependent spatial learning and memory, assessed by the Morris water maze test, was markedly decreased 3-4 weeks after TBI, a deficit that was robustly recovered by treatment with MSC-FGF21, but not MSC-mCherry control. Hippocampus-independent learning and memory, assessed by the novel object recognition test, was also impaired; these effects were blocked by treatment with both MSC-FGF21 and MSC-mCherry control. FGF21 protein levels in the ipsilateral hippocampus were drastically reduced 4 weeks post-TBI, a loss that was restored by treatment with MSC-FGF21, but not MSC-mCherry. MSC-FGF21 treatment also partially restored TBI-induced deficits in neurogenesis and maturation of immature hippocampal neurons, whereas MSC-mCherry was less effective. Finally, MSC-FGF21 treatment also normalized TBI-induced impairments in dendritic arborization of hippocampal neurons. Taken together, the results indicate that MSC-FGF21 treatment significantly improved TBI-induced spatial memory deficits, impaired hippocampal neurogenesis, and abnormal dendritic morphology. Future clinical investigations using MSC-FGF21 to improve post-TBI outcomes are warranted.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Factores de Crecimiento de Fibroblastos/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Neurogénesis , Recuperación de la Función , Animales , Modelos Animales de Enfermedad , Hipocampo/patología , Aprendizaje por Laberinto , Memoria , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología
11.
J Vis Exp ; (153)2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31814625

RESUMEN

Stem cell-based therapies for brain injuries, such as traumatic brain injury (TBI), are a promising approach for clinical trials. However, technical hurdles such as invasive cell delivery and tracking with low transplantation efficiency remain challenges in translational stem-based therapy. This article describes an emerging technique for stem cell labeling and tracking based on the labeling of the mesenchymal stem cells (MSCs) with superparamagnetic iron oxide (SPIO) nanoparticles, as well as intranasal delivery of the labeled MSCs. These nanoparticles are fluorescein isothiocyanate (FITC)-embedded and safe to label the MSCs, which are subsequently delivered to the brains of TBI-induced mice by the intranasal route. They are then tracked non-invasively in vivo by real-time magnetic resonance imaging (MRI). Important advantages of this technique that combines SPIO for cell labeling and intranasal delivery include (1) non-invasive, in vivo MSC tracking after delivery for long tracking periods, (2) the possibility of multiple dosing regimens due to the non-invasive route of MSC delivery, and (3) possible applications to humans, owing to the safety of SPIO, non-invasive nature of the cell-tracking method by MRI, and route of administration.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Rastreo Celular/métodos , Nanopartículas de Magnetita , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Lesiones Traumáticas del Encéfalo/terapia , Modelos Animales de Enfermedad , Compuestos Férricos , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
12.
Int J Mol Sci ; 20(11)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31142002

RESUMEN

Mesenchymal stem cells (MSCs) are emerging as a potential therapeutic intervention for brain injury due to their neuroprotective effects and safe profile. However, the homing ability of MSCs to injury sites still needs to be improved. Fibroblast Growth Factor 21 (FGF21) was recently reported to enhance cells migration in different cells type. In this study, we investigated whether MSCs that overexpressing FGF21 (MSC-FGF21) could exhibit enhanced homing efficacy in brain injury. We used novel Molday IONEverGreen™ (MIEG) as cell labeling probe that enables a non-invasive, high-sensitive and real-time MRI tracking. Using a mouse model of traumatic brain injury (TBI), MIEG labeled MSCs were transplanted into the contralateral lateral ventricle followed by real-time MRI tracking. FGF21 retained MSC abilities of proliferation and morphology. MSC-FGF21 showed significantly greater migration in transwell assay compared to control MSC. MIEG labeling showed no effects on MSCs' viability, proliferation and differentiation. Magnetic resonance imaging (MRI) revealed that FGF21 significantly enhances the homing of MSC toward injury site. Histological analysis further confirmed the MRI findings. Taken together, these results show that FGF21 overexpression and MIEG labeling of MSC enhances their homing abilities and enables non-invasive real time tracking of the transplanted cells, provides a promising approach for MSC based therapy and tracking in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Movimiento Celular , Factores de Crecimiento de Fibroblastos/genética , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Animales , Células Cultivadas , Factores de Crecimiento de Fibroblastos/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL
13.
Bone Rep ; 8: 25-28, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29379847

RESUMEN

It has been demonstrated, that long-term chronic tryptophan deficiency, results in decreased serotonin synthesis, which may lead to low bone mass and low bone formation. Findings from studies in male patients with idiopathic osteoporosis suggested a decreased transport of tryptophan in erythrocytes of osteoporotic patients, indicating that serotonin system defects may be involved in the etiology of low bone mass. Tryptophan is the precursor of serotonin, and a disturbed transport of tryptophan is implicated in altered serotonin synthesis. However, no study has investigated the tryptophan transport kinetics in MIO patients. The aim of this study is to investigate the kinetic parameters of tryptophan transport in fibroblasts derived from MIO patients compared to age and sex matched controls. Fibroblast cells were cultured from skin biopsies obtained from 14 patients diagnosed with Male Idiopathic Osteoporosis and from 13 healthy age-sex matched controls, without a diagnosis of osteoporosis. Transport of the amino acid tryptophan across the cell membrane was measured by the cluster tray method. The kinetic parameters, maximal transport capacity (Vmax) and affinity constant (Km) were determined by using the Lineweaver-Burke plot equation. The results of this study have shown a significantly lower mean value for Vmax (p = 0.0138) and lower Km mean value (p = 0.0009) of tryptophan transport in fibroblasts of MIO patients compared to the control group. A lower Vmax implied a decreased tryptophan transport availability in MIO patients. In conclusion, reduced cellular tryptophan availability in MIO patients might result in reduced brain serotonin synthesis and its endogenous levels in peripheral tissues, and this may contribute to low bone mass/formation. The findings of the present study could contribute to the etiology of idiopathic osteoporosis and for the development of novel approaches for diagnosis, treatment and management strategies of MIO.

14.
Exp Lung Res ; 41(7): 383-92, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26151838

RESUMEN

BACKGROUND AND OBJECTIVE: Glucocorticoids (GCs) are anti-inflammatory agents, but their use in cystic fibrosis (CF) is controversial. In CF, the early colonization with Pseudomonas aeruginosa is mainly due to nonmucoid strains that can internalize, and induce apoptosis in the epithelial cells. Uptake of P. aeruginosa by the epithelial cells and subsequent apoptosis may prevent colonization of P. aeruginosa in CF airways. In the airway epithelia, several other biological effects, including an anti-secretory role by decreasing intracellular Ca(2+) concentration have been described for this anti-inflammatory drug. However, the effects of GCs on the nonmucoid P. aeruginosa internalization and intracellular Ca(2+) in CF bronchial epithelial cells have not been evaluated. METHODS: We used cultured human CF bronchial airway epithelial cell (CFBE) monolayers to determine P. aeruginosa internalization, apoptosis, and intracellular Ca(2+)concentration in CF bronchial epithelial cells. Cells were treated with IL-6, IL-8, dexamethasone, betamethasone, or budesonide. RESULTS: GCs in co-treatments with IL-6 reversed the effect of IL-6 by decreasing the internalization of P. aeruginosa in the CFBE cells. GCs decreased the extent of apoptosis in CFBE cells infected with internalized P. aeruginosa, and increased the intracellular Ca(2+) concentration. CONCLUSION: These findings suggest that if internalization of P. aeruginosa reduces infection, GC therapy would increase the risk of pulmonary infection by decreasing the internalization of P. aeruginosa in CF cells, but GCs may improve airway hydration by increasing the intracellular Ca(2+) concentration. Whether the benefits of GC treatment outweigh the negative effects is questionable, and further clinical studies need to be carried out.


Asunto(s)
Bronquios/efectos de los fármacos , Calcio/metabolismo , Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Células Epiteliales/efectos de los fármacos , Glucocorticoides/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Bronquios/metabolismo , Bronquios/microbiología , Budesonida/farmacología , Línea Celular , Células Cultivadas , Dexametasona/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Epitelio/microbiología , Humanos , Interleucina-6/farmacología , Interleucina-8/farmacología , Infecciones por Pseudomonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA