Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124989, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154403

RESUMEN

A newly developed 2H5MA-MOF sensor by covalently linking NH2-MIL-53(Al) with 2'-Hydroxy-5'-methylacetophenon, designed for highly sensitive and selective detection of Cd2+ ions using fluorometric methods. Detailed structural and morphological analyses confirmed the sensor's unique properties. It demonstrated an impressive linear detection range from 0 to 2 ppm, with an exceptionally low detection limit of 5.77 × 10-2 ppm and a quantification limit of 1.75 × 10-1 ppm, indicating its high sensitivity (R2 = 0.9996). The sensor also responded quickly, detecting Cd2+ within just 30 s at pH 4. We successfully tested it on real samples of tap water and human blood plasma, achieving recovery rates between 96 % and 104 %. The accuracy of these findings was further validated by comparison with ICP-OES. Overall, the 2H5MA-MOF sensor shows great potential for fast, ultra-sensitive, and reliable detection of Cd2+ ions, making it a promising tool for environmental and biomedical applications.


Asunto(s)
Cadmio , Agua Potable , Límite de Detección , Estructuras Metalorgánicas , Cadmio/sangre , Cadmio/análisis , Humanos , Estructuras Metalorgánicas/química , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/sangre , Iones/sangre , Concentración de Iones de Hidrógeno
2.
Sci Rep ; 14(1): 21631, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284822

RESUMEN

Crystal violet dye poses significant health risks to humans, including carcinogenic and mutagenic effects, as well as environmental hazards due to its persistence and toxicity in aquatic ecosystems. This study focuses on the efficient removal of crystal violet dye from aqueous media using novel Co3O4/Co3(BO3)2 nanostructures synthesized via the Pechini sol-gel approach. The nanostructures, which were abbreviated to EN600 and EN800, were fabricated at calcination temperatures of 600 and 800 °C, respectively. X-ray diffraction (XRD) analysis revealed that the synthesized samples have a cubic Co3O4 phase and an orthorhombic Co3(BO3)2 phase, with mean crystal sizes of 43.82 nm and 52.93 nm for EN600 and EN800 samples, respectively. The Brunauer-Emmett-Teller (BET) surface areas of EN600 and EN800 samples were 65.80 and 43.76 m2/g, respectively, indicating a significant surface area available for adsorption. Optimal removal of crystal violet dye was achieved at a temperature of 298 K, a contact time of 70 min, and a pH of 10. The maximum adsorption capacities were found to be 284.09 mg/g for EN600 and 256.41 mg/g for EN800, which are notably higher compared to many conventional adsorbents. The adsorption process followed the pseudo-second-order kinetic model and fitted well with the Langmuir isotherm. The adsorption was exothermic, spontaneous, and physical in nature. Moreover, the adsorbents exhibited excellent reusability, retaining high efficiency after multiple regeneration cycles using 6 mol/L hydrochloric acid. These findings highlight the potential of these Co3O4/Co3(BO3)2 nanostructures as effective and sustainable materials for water purification applications.

3.
Luminescence ; 37(4): 622-632, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35098638

RESUMEN

Novel photoluminescent nanocomposite sheets were prepared for simple commercial manufacturing of transparent and luminous photochromic smart windows. A simple physical integration of lanthanide-doped strontium aluminium oxide (LdSAO) nanoparticles into recycled polyethylene (PE) waste produced a smart nanocomposite with persistent phosphorescence and photochromic properties. Because the nanoparticle form of LdSAO is important for developing transparent materials, LdSAO nanoparticles were well dispersed in the PE matrix. Both the morphologies and chemical compositions of the LdSAO nanoparticles and LdSAO-containing luminescent PE sheets were investigated. Both LdSAO-free and photoluminescent PE sheets were colourless in normal daylight. However the LdSAO-containing PE luminescent samples only exhibited a brilliant green colour under ultraviolet (UV) light and a greenish-yellow colour in the dark as verified by Commission Internationale de l'éclairage laboratory parameters. Both absorbance and emission bands were monitored at 377 and 436/517 nm, respectively. The LdSAO-containing PE luminescent sheets were compared with the LdSAO-free sample using both photoluminescence spectroscopy and for their mechanical properties and were found to have improved scratch resistance, UV protection, and superhydrophobic activity. Due to the added LdSAO, photoluminescence, decay, and lifetime spectral tests confirmed its photochromic fluorescence and long-lasting phosphorescence characteristics. The PE@LdSAO nanocomposite sheets displayed UV protection, photostability, hydrophobicity, and excellent durability compared with the blank LdSAO-free PE sheet.

4.
Heliyon ; 7(11): e08485, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34901511

RESUMEN

New pyrazole derivatives were prepared and used to synthesize new bioactive agents from Cu(II) complexes that have OSN donors. Analytical and spectral (IR, UV-Vis, MS, 1H NMR, ESR & XRD) instruments characterized these complexes as well as their corresponding ligands. The bonding mode has been modified from ligand to ligand and the molar ratio for isolated complexes has also varied (1:1/1:2, M:L). The geometry of isolated complexes was commonly proposed, based on electronic transitions and ESR spectral-parameters. Via computational approaches, these structures were optimized using standard programs (Gaussian 09 & HyperChem 8.1) under the required basis set. Consequently, important physical characteristics have been obtained after finishing the optimization process. Inhibition behavior of all new synthesizes was studied by MOE module as in-silico approach which conducted versus the crystal structure of NUDT5 protein (6gru) of breast cancer cells. The interaction features summarized from docking processes, reveal effective inhibition validity for new Cu(II) complexes versus breast cancer cells. This according to scoring energy values and the stability of docking complexes in true interaction path (bond length ≤3.5 Å) particularly with Cu(II)-L3 and Cu(II)-L4 complexes. This reflects the possibility of successful behavior during practical application through in-vitro assay that intended in this study. Finally, the degree of toxicity of such new compounds to the breast cancer cell line was determined by in-vitro screening. To judge perfectly on their toxicity, in-vitro screening must compared to positive control as Doxorubicin (reference drug). IC50 values were calculated and represent Cu(II) complexes as outstanding cytotoxic agents which revealed superiority on the reference drug itself.

5.
ACS Omega ; 6(41): 27315-27324, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34693152

RESUMEN

Photochromic materials have attracted broad interest to enhance the anti-counterfeiting of commercial products. In order to develop anti-counterfeiting mechanically reliable composite materials, it is urgent to improve the engineering process of both the material and matrix. Herein, we report on the development of anti-counterfeiting mechanically reliable nanocomposites composed of rare-earth doped aluminate strontium oxide phosphor (RESA) nanoparticles (NPs) immobilized into the thermoplastic polyurethane-based nanofibrous film successfully fabricated via the simple solution blowing spinning technology. The generated photochromic film exhibits an ultraviolet-stimulated anti-counterfeiting property. Different films of different emissive properties were generated using different total contents of RESA. Transmission electron microscopy was utilized to investigate the morphological properties of RESA NPs to display a particle diameter of 3-17 nm. The morphologies, compositions, optical transmittance, and mechanical performance of the produced photochromic nanofibrous films were investigated. Several analytical methods were employed, including energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectrometry. The fibrous diameter of RESA-TPU was in the range of 200-250 nm. In order to ensure the development of transparent RESA-TPU film, RESA must be prepared in the nanosized form to allow better dispersion without agglomeration in the TPU matrix. The luminescent RESA-TPU film displayed an absorbance intensity at 367 nm and two emission intensities at 431 and 517 nm. The generated RESA-TPU films showed an enhanced hydrophobicity without negatively influencing their original appearance and mechanical properties. Upon irradiation with ultraviolet light, the transparent nanofibrous films displayed rapid and reversible photochromism to greenish-yellow without fatigue. The produced anti-counterfeiting films demonstrated stretchable, flexible, and translucent properties. As a simple sort of anti-counterfeiting substrates, the current novel photochromic film provides excellent anti-counterfeiting strength at low-cost as an efficient method to develop versatile materials with high mechanical strength to create an excellent market as well as adding economic and social values.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA