Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Robot ; 9(94): eadn6844, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259780

RESUMEN

To achieve real-world functionality, robots must have the ability to carry out decision-making computations. However, soft robots stretch and therefore need a solution other than rigid computers. Examples of embedding computing capacity into soft robots currently include appending rigid printed circuit boards to the robot, integrating soft logic gates, and exploiting material responses for material-embedded computation. Although promising, these approaches introduce limitations such as rigidity, tethers, or low logic gate density. The field of stretchable electronics has sought to solve these challenges, but a complete pipeline for direct integration of single-board computers, microcontrollers, and other complex circuitry into soft robots has remained elusive. We present a generalized method to translate any complex two-layer circuit into a soft, stretchable form. This enabled the creation of stretchable single-board microcontrollers (including Arduinos) and other commercial circuits (including SparkFun circuits), without design simplifications. As demonstrations of the method's utility, we embedded highly stretchable (>300% strain) Arduino Pro Minis into the bodies of multiple soft robots. This makes use of otherwise inert structural material, fulfilling the promise of the stretchable electronic field to integrate state-of-the-art computational power into robust, stretchable systems during active use.

2.
Adv Mater ; 34(26): e2109427, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35293649

RESUMEN

Stretchable electronics have potential in wide-reaching applications including wearables, personal health monitoring, and soft robotics. Many recent advances in stretchable electronics leverage liquid metals, particularly eutectic gallium-indium (EGaIn). A variety of EGaIn electromechanical behaviors have been reported, ranging from bulk conductor responses to effectively strain-insensitive responses. However, numerous measurement techniques have been used throughout the literature, making it difficult to directly compare the various proposed formulations. Here, the electromechanical responses of EGaIn found in the literature is reviewed and pure EGaIn is investigated using three electrical resistance measurement techniques: four point probe, two point probe, and Wheatstone bridge. The results indicate substantial differences in measured electromechanical behavior between the three methods, which can largely be accounted for by correcting for a fixed offset corresponding to the resistances of various parts of the measurement circuits. Yet, even accounting for several of these sources of experimental error, the average relative change in resistance of EGaIn is found to be lower than that predicted by the commonly used bulk conductor assumption, referred to as Pouillet's law. Building upon recent theories proposed in the literature, possible explanations for the discrepancies are discussed. Finally, suggestions are provided on experimental design to enable reproducible and interpretable research.

3.
Soft Robot ; 9(4): 639-656, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34705572

RESUMEN

Numerous recent advances in robotics have been inspired by the biological principle of tensile integrity-or "tensegrity"-to achieve remarkable feats of dexterity and resilience. Tensegrity robots contain compliant networks of rigid struts and soft cables, allowing them to change their shape by adjusting their internal tension. Local rigidity along the struts provides support to carry electronics and scientific payloads, while global compliance enabled by the flexible interconnections of struts and cables allows a tensegrity to distribute impacts and prevent damage. Numerous techniques have been proposed for designing and simulating tensegrity robots, giving rise to a wide range of locomotion modes, including rolling, vibrating, hopping, and crawling. In this study, we review progress in the burgeoning field of tensegrity robotics, highlighting several emerging challenges, including automated design, state sensing, and kinodynamic motion planning.


Asunto(s)
Robótica , Electrónica , Locomoción , Movimiento (Física) , Robótica/métodos
4.
ACS Appl Mater Interfaces ; 13(24): 28729-28736, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34125509

RESUMEN

Soft electronic systems require stretchable, printable conductors for applications in soft robotics, wearable technologies, and human-machine interfaces. Gallium-based room-temperature liquid metals (LMs) have emerged as promising candidates, and recent liquid metal-embedded elastomers (LMEEs) have demonstrated favorable properties such as stable conductivity during strain, cyclic durability, and patternability. Here, we present an ethanol/polydimethylsiloxane/liquid metal (EtOH/PDMS/LM) double emulsion ink that enables a fast, scalable method to print LM conductors with high conductivity (7.7 × 105 S m-1), small resistance change when strained, and consistent cyclic performance (over 10,000 cycles). EtOH, the carrier solvent, is leveraged for its low viscosity to print the ink onto silicone substrates. PDMS resides at the EtOH/LM interface and cures upon deposition and EtOH evaporation, consequently bonding the LM particles to each other and to the silicone substrate. The printed PDMS-LM composite can be subsequently activated by direct laser writing, forming high-resolution electrically conductive pathways. We demonstrate the utility of the double emulsion ink by creating intricate electrical interconnects for stretchable electronic circuits. This work combines the speed, consistency, and precision of laser-assisted manufacturing with the printability, high conductivity, strain insensitivity, and mechanical robustness of the PDMS-LM composite, unlocking high-yield, high-throughput, and high-density stretchable electronics.

5.
Nat Mater ; 20(6): 851-858, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33603186

RESUMEN

Stretchable electronic circuits are critical for soft robots, wearable technologies and biomedical applications. Development of sophisticated stretchable circuits requires new materials with stable conductivity over large strains, and low-resistance interfaces between soft and conventional (rigid) electronic components. To address this need, we introduce biphasic Ga-In, a printable conductor with high conductivity (2.06 × 106 S m-1), extreme stretchability (>1,000%), negligible resistance change when strained, cyclic stability (consistent performance over 1,500 cycles) and a reliable interface with rigid electronics. We employ a scalable transfer-printing process to create various stretchable circuit board assemblies that maintain their performance when stretched, including a multilayer light-emitting diode display, an amplifier circuit and a signal conditioning board for wearable sensing applications. The compatibility of biphasic Ga-In with scalable manufacturing methods, robust interfaces with off-the-shelf electronic components and electrical/mechanical cyclic stability enable direct conversion of established circuit board assemblies to soft and stretchable forms.

6.
Sci Robot ; 5(39)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33022603

RESUMEN

Compliant sensors based on composite materials are necessary components for geometrically complex systems such as wearable devices or soft robots. Composite materials consisting of polymer matrices and conductive fillers have facilitated the manufacture of compliant sensors due to their potential to be scaled in printing processes. Printing composite materials generally entails the use of solvents, such as toluene or cyclohexane, to dissolve the polymer resin and thin down the material to a printable viscosity. However, such solvents cause swelling and decomposition of most polymer substrates, limiting the utility of the composite materials. Moreover, many such conventional solvents are toxic or otherwise present health hazards. Here, sustainable manufacturing of sensors is reported, which uses an ethanol-based Pickering emulsion that spontaneously coagulates and forms a conductive composite. The Pickering emulsion consists of emulsified polymer precursors stabilized by conductive nanoparticles in an ethanol carrier. Upon evaporation of the ethanol, the precursors are released, which then coalesce amid nanoparticle networks and spontaneously polymerize in contact with the atmospheric moisture. We printed the self-coagulating conductive Pickering emulsion onto a variety of soft polymeric systems, including all-soft actuators and conventional textiles, to sensitize these systems. The resulting compliant sensors exhibit high strain sensitivity with negligible hysteresis, making them suitable for wearable and robotic applications.


Asunto(s)
Robótica/instrumentación , Dispositivos Electrónicos Vestibles , Materiales Biomiméticos , Adaptabilidad , Conductividad Eléctrica , Emulsiones , Diseño de Equipo , Etanol , Humanos , Nanopartículas , Polímeros , Solventes , Textiles
7.
Soft Matter ; 16(25): 5827-5839, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32347290

RESUMEN

Many soft robotic components require highly stretchable, electrically conductive materials for proper operation. Often these conductive materials are used as sensors or as heaters for thermally responsive materials. However, there is a scarcity of stretchable materials that can withstand the high strains typically experienced by soft robots, while maintaining the electrical properties necessary for Joule heating (e.g., uniform conductivity). In this work, we present a silicone composite containing both liquid and solid inclusions that can maintain a uniform conductivity while experiencing 200% linear strains. This composite can be cast in thin sheets enabling it to be wrapped around thermally responsive soft materials that increase their volume or stretchability when heated. We show how this material opens up possibilities for electrically controllable shape changing soft robotic actuators, as well as all-silicone actuation systems powered only by electrical stimulus. Additionally, we show that this stretchable composite can be used as an electrode material in other applications, including a strain sensor with a linear response up to 200% strain and near-zero signal noise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA