Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr C Struct Chem ; 78(Pt 4): 257-264, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35380129

RESUMEN

The crystal structures of three ß-halolactic acids have been determined, namely, ß-chlorolactic acid (systematic name: 3-chloro-2-hydroxypropanoic acid, C3H5ClO3) (I), ß-bromolactic acid (systematic name: 3-bromo-2-hydroxypropanoic acid, C3H5BrO3) (II), and ß-iodolactic acid (systematic name: 2-hydroxy-3-iodopropanoic acid, C3H5IO3) (III). The number of molecules in the asymmetric unit of each crystal structure (Z') was found to be two for I and II, and one for III, making I and II isostructural and III unique. The difference between the molecules in the asymmetric units of I and II is due to the direction of the hydrogen bond of the alcohol group to a neighboring molecule. Molecular packing shows that each structure has alternating layers of intermolecular hydrogen bonding and halogen-halogen interactions. Hirshfeld surfaces and two-dimensional fingerprint plots were analyzed to further explore the intermolecular interactions of these structures. In I and II, energy minimization is achieved by lowering of the symmetry to adopt two independent molecular conformations in the asymmetric unit.


Asunto(s)
Enlace de Hidrógeno , Cristalografía por Rayos X , Conformación Molecular
2.
Nanoscale Horiz ; 6(3): 231-237, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33480921

RESUMEN

High-entropy alloy (HEA) nanoparticles (NPs) hold great promise in electrocatalysis because of their nearly unlimited compositions, tailorable active sites, and high durability. However, the synthesis of these compositionally complex structures as monodisperse NPs remains a challenge by colloidal routes because the different rates of metal precursor reduction lead to phase separation. Here, we report the conversion of core@shell NPs into HEA NPs through annealing, with conservation of sample monodispersity. This potentially general route for high-quality HEA NPs was demonstrated by preparing PdCu@PtNiCo NPs via seed-mediated co-reduction, wherein Pt, Ni, and Co were co-deposited on PdCu seeds in solution. These multimetallic NPs were then converted to single-crystalline and single-phase PdCuPtNiCo NPs through annealing. On account of their small particle size, highly dispersed Pt/Pd content, and low elemental diffusivity, these HEA NPs were found to be a highly efficient and durable catalyst for the oxygen reduction reaction. They were also highly selective for the four-electron transfer pathway. We expect that this new synthetic strategy will facilitate the synthesis of new HEA NPs for catalysis and other applications.

3.
Acc Chem Res ; 54(7): 1662-1672, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33377763

RESUMEN

ConspectusWhen combined with earth-abundant metals, Pt-based alloy nanoparticles (NPs) can be cost-effective electrocatalysts. However, these NPs can experience leaching of non-noble-metal components under harsh electrocatalytic conditions. The Skrabalak group has demonstrated a novel NP construct in which Pt-based random alloy surfaces are stabilized against non-noble-metal leaching by their deposition onto intermetallic seeds. These core@shell NPs are highly durable electrocatalysts, with the ability to tune catalytic performance by the core@shell architecture, surface alloy composition, and NP shape. This versatility was demonstrated in a model system in which random alloy (ra-) PtM surfaces were deposited onto ordered intermetallic (i-) PdCu seeds using seed-mediated co-reduction (SMCR). In the initial demonstration, ra-PtCu shells were deposited on i-PdCu seeds, with these core@shell NPs exhibiting higher specific and mass activities for the oxygen reduction reaction (ORR) when compared to similarly sized ra-PtCu NPs. These NPs also showed outstanding durability, maintaining ∼85% in specific activity after 5000 cycles. Characterization of the NPs after use revealed minimal loss of Cu. The activity enhancement was attributed to the strained surface that arises from the lattice mismatch between the intermetallic core and random alloy surface. The outstanding durability was attributed to the ordered structure of the intermetallic core.The origin of this durability enhancement was investigated by classical molecular dynamics simulations, where Pt atoms were found to have a lower potential energy when deposited on an intermetallic core than when deposited on a random alloy core. Also, ordering of Cu atoms at the core@shell interface appears to enhance the overall binding between the core and the shell materials. Inspired by this initial demonstration, SMCR has been used to achieve shells of different random alloy compositions, PtM (M = Ni, Co, Cu, or Fe). This advance is significant because ligand effects vary as a function of PtM identity and Pt/M ratio. These features also influence the degree of surface strain imparted from the lattice mismatch between the core and shell materials. Like the initial demonstration, standout features of these core@shell NPs were high durability and resistance to non-noble metal leaching.Moving forward, efforts have been directed toward integrating shape-control to this core@shell NP construct. This integration is motivated by the shape-dependent catalytic performance of NPs derived from the selective expression of specific facets. Considering the initial i-PdCu@ra-PtCu system, NPs with a cubic shape have been achieved by judicious selection of capping ligands during SMCR. Evaluation of these NPs as catalysts for the electrooxidation of formic acid found that the nanocubic shape enhances catalytic performance compared to similar core@shell NPs with a spherical morphology. We envision that SMCR can be applied to other NP systems to achieve highly durable catalysts as the syntheses of monodisperse and shape-controlled intermetallic seeds are advanced. This Account highlights the role of intermetallic cores in providing more durable electrocatalysts. More broadly, the versatility of SMCR is highlighted as a route to integrate architecture, alloy surfaces, and shape within one NP system, and how this achievement is inspiring new high-performance and robust catalysts is discussed.

4.
Nano Lett ; 20(4): 2821-2828, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32105491

RESUMEN

A central theme of nanocrystal (NC) research involves synthesis of dimension-controlled NCs and studyof size-dependent scaling laws governing their optical, electrical, magnetic, and thermodynamic properties. Here, we describe the synthesis of monodisperse CdO NCs that exhibit high quality-factor (up to 5.5) mid-infrared (MIR) localized surface plasmon resonances (LSPR) and elucidate the inverse scaling relationship between carrier concentration and NC size. The LSPR wavelength is readily tunable between 2.4 and ∼6.0 µm by controlling the size of CdO NCs. Structural and spectroscopic characterization provide strong evidence that free electrons primarily originate from self-doping due to NC surface-induced nonstoichiometry. The ability to probe and to control NC stoichiometry and intrinsic defects will pave the way toward predictive synthesis of doped NCs with desirable LSPR characteristics.

5.
Nat Commun ; 10(1): 1394, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30918244

RESUMEN

Metal-oxide nanocrystals doped with aliovalent atoms can exhibit tunable infrared localized surface plasmon resonances (LSPRs). Yet, the range of dopant types and concentrations remains limited for many metal-oxide hosts, largely because of the difficulty in establishing reaction kinetics that favors dopant incorporation by using the co-thermolysis method. Here we develop cation-exchange reactions to introduce p-type dopants (Cu+, Ag+, etc.) into n-type metal-oxide nanocrystals, producing programmable LSPR redshifts due to dopant compensation. We further demonstrate that enhanced n-type doping can be realized via sequential cation-exchange reactions mediated by the Cu+ ions. Cation-exchange transformations add a new dimension to the design of plasmonic nanocrystals, allowing preformed nanocrystals to be used as templates to create compositionally diverse nanocrystals with well-defined LSPR characteristics. The ability to tailor the doping profile postsynthetically opens the door to a multitude of opportunities to deepen our understanding of the relationship between local structure and LSPR properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA