Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutrients ; 14(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36079828

RESUMEN

Nowadays, slimming diet methodology works within a reduction of body mass using a decrease of dietary energy intake. However, there is no suitable method for understanding the dynamic process of body mass metabolic transformation over time. In the present paper, we have developed a biomathematic model to explain the temporal trend of body mass and its variations of people who have undergone a change in their diet using the solving equation of the model. Data relating to sex, age, body mass, and BMI were collected, and the compartmental model used to interpret the body mass trends was constructed by assuming that the mass results from the sum of the metabolic processes: catabolic, anabolic, distributive. The validation of the model was carried out by variance analysis both on the total and individual data sets. The results confirm that the trend of body mass and its variations over time depends on metabolic rates. These are specific to each individual and characterize the distribution of nutritional molecules in the various body districts and the processes catabolic, anabolic, distributive. Body mass and its variations are justified by the metabolic transformations of the nutritional quantities. This would explain why energetically equal diets can correspond to people of different body mass and that energy-different diets can correspond to people of body mass at all similar.


Asunto(s)
Dieta , Obesidad , Índice de Masa Corporal , Ingestión de Alimentos , Ingestión de Energía , Humanos , Modelos Teóricos , Obesidad/metabolismo
2.
Front Physiol ; 10: 204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906266

RESUMEN

The larvae of Hermetia illucens are among the most promising agents for the bioconversion of low-quality biomass, such as organic waste, into sustainable and nutritionally valuable proteins for the production of animal feed. Despite the great interest in this insect, the current literature provides information limited to the optimization of rearing methods for H. illucens larvae, with particular focus on their efficiency in transforming different types of waste and their nutritional composition in terms of suitability for feed production. Surprisingly, H. illucens biology has been neglected and a deep understanding of the morphofunctional properties of the larval midgut, the key organ that determines the extraordinary dietary plasticity of this insect, has been completely overlooked. The present study aims to fill this gap of knowledge. Our results demonstrate that the larval midgut is composed of distinct anatomical regions with different luminal pH and specific morphofunctional features. The midgut epithelium is formed by different cell types that are involved in nutrient digestion and absorption, acidification of the lumen of the middle region, endocrine regulation, and growth of the epithelium. A detailed characterization of the activity of enzymes involved in nutrient digestion and their mRNA expression levels reveals that protein, carbohydrate, and lipid digestion is associated to specific regions of this organ. Moreover, a significant lysozyme activity in the lumen of the anterior and middle regions of the midgut was detected. This enzyme, together with the strong acidic luminal pH of middle tract, may play an important role in killing pathogenic microorganisms ingested with the feeding substrate. The evidence collected led us to propose a detailed functional model of the larval midgut of H. illucens in which each region is characterized by peculiar features to accomplish specific functions. This platform of knowledge sets the stage for developing rearing protocols to optimize the bioconversion ability of this insect and its biotechnological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA