Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 9(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39056846

RESUMEN

The umbilical cord is a material that enhances regeneration and is devoid of age-related changes in the extracellular matrix (ECM). The aim of this work was to develop a biodegradable scaffold from a decellularized human umbilical cord (UC-scaffold) to heal full-thickness wounds. Decellularization was performed with 0.05% sodium dodecyl sulfate solution. The UC-scaffold was studied using morphological analysis methods. The composition of the UC-scaffold was studied using immunoblotting and Fourier transform infrared spectroscopy. The adhesion and proliferation of mesenchymal stromal cells were investigated using the LIVE/DEAD assay. The local reaction was determined by subcutaneous implantation in mice (n = 60). A model of a full-thickness skin wound in mice (n = 64) was used to assess the biological activity of the UC-scaffold. The proposed decellularization method showed its effectiveness in the umbilical cord, as it removed cells and retained a porous structure, type I and type IV collagen, TGF-ß3, VEGF, and fibronectin in the ECM. The biodegradation of the UC-scaffold in the presence of collagenase, its stability during incubation in hyaluronidase solution, and its ability to swell by 1617 ± 120% were demonstrated. Subcutaneous scaffold implantation in mice showed gradual resorption of the product in vivo without the formation of a dense connective tissue capsule. Epithelialization of the wound occurred completely in contrast to the controls. All of these data suggest a potential for the use of the UC-scaffold.

2.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891883

RESUMEN

Articular cartilage damage still remains a major problem in orthopedical surgery. The development of tissue engineering techniques such as autologous chondrocyte implantation is a promising way to improve clinical outcomes. On the other hand, the clinical application of autologous chondrocytes has considerable limitations. Mesenchymal stromal cells (MSCs) from various tissues have been shown to possess chondrogenic differentiation potential, although to different degrees. In the present study, we assessed the alterations in chondrogenesis-related gene transcription rates and extracellular matrix deposition levels before and after the chondrogenic differentiation of MSCs in a 3D spheroid culture. MSCs were obtained from three different tissues: umbilical cord Wharton's jelly (WJMSC-Wharton's jelly mesenchymal stromal cells), adipose tissue (ATMSC-adipose tissue mesenchymal stromal cells), and the dental pulp of deciduous teeth (SHEDs-stem cells from human exfoliated deciduous teeth). Monolayer MSC cultures served as baseline controls. Newly formed 3D spheroids composed of MSCs previously grown in 2D cultures were precultured for 2 days in growth medium, and then, chondrogenic differentiation was induced by maintaining them in the TGF-ß1-containing medium for 21 days. Among the MSC types studied, WJMSCs showed the most similarities with primary chondrocytes in terms of the upregulation of cartilage-specific gene expression. Interestingly, such upregulation occurred to some extent in all 3D spheroids, even prior to the addition of TGF-ß1. These results confirm that the potential of Wharton's jelly is on par with adipose tissue as a valuable cell source for cartilage engineering applications as well as for the treatment of osteoarthritis. The 3D spheroid environment on its own acts as a trigger for the chondrogenic differentiation of MSCs.


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Matriz Extracelular , Células Madre Mesenquimatosas , Esferoides Celulares , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Condrogénesis/genética , Matriz Extracelular/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Células Cultivadas , Gelatina de Wharton/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Técnicas de Cultivo de Célula/métodos , Ingeniería de Tejidos/métodos , Cartílago/citología , Cartílago/metabolismo , Diente Primario/citología , Diente Primario/metabolismo , Pulpa Dental/citología , Pulpa Dental/metabolismo
3.
Gels ; 9(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37367127

RESUMEN

Our study sought approaches for chronic liver failure (CLF) treatment and correction via cell-engineered constructs (CECs). They are built from biopolymer-based, microstructured, and collagen-containing hydrogel (BMCG). We also strove to evaluate the functional activity of BMCG in liver regeneration. MATERIALS AND METHODS: Allogeneic liver cells (namely, hepatocytes; LC) together with mesenchymal multipotent stem cells of bone marrow origin (MMSC BM; BMSCs) were adhered to our BMCG to compose implanted liver CECs. Thereafter, we investigated a model of CLF in rats receiving the implanted CECs. The CLF had been provoked by long-term exposure to carbon tetrachloride. The study comprised male Wistar rats (n = 120) randomized into 3 groups: Group 1 was a control group with the saline treatment of the hepatic parenchyma (n = 40); Group 2 received BMCG only (n = 40); and Group 3 was loaded with CECs implanted into the parenchyma of their livers (n = 40). August rats (n = 30) made up a donor population for LCs and MMSC BM to develop grafts for animals from Group 3. The study length was 90 days. RESULTS: CECs were shown to affect both biochemical test values and morphological parameters in rats with CLF. CONCLUSION: We found BMCG-derived CECs to be operational and active, with regenerative potential. Group 3 showed significant evidence of forced liver regeneration that tended to persist until the end of the study (day 90). The phenomenon is reflected by biochemical signs of hepatic functional recovery by day 30 after grafting (compared to Groups 1 and 2), whereas structural features of liver repair (necrosis prevention, missing formation of vacuoles, degenerating LC number decrease, and delay of hepatic fibrotic transformation). Such implantation of BMCG-derived CECs with allogeneic LCs and MMSC BM might represent a proper option to correct and treat CLF, as well as to maintain affected liver function in patients with liver grafting needed.

4.
Life (Basel) ; 13(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36983814

RESUMEN

Previously, the authors showed that the application of the aminodihydrophthalazinedione sodium (ADPS) immunomodulator transdermal therapeutic system (TTS) to laboratory animals provides bioavailability analogous to the intramuscular administration of this drug at the same dose. At the same time, its maximum blood concentration is significantly reduced, and the retention time of the drug in the body is increased more than 10-fold, which can contribute to prolonging the drug effect. The aim of the work was to identify a possible positive effect of the transdermal administration of the ADPS immunomodulator on reparative liver regeneration on an experimental model of extensive liver resection (ELR). It has been shown that at a period of 48 h after ELR, the percutaneous administration of the immunomodulator has a pronounced stimulating effect on the mitotic activity of rat liver cells; by 72 h after ELR, an accelerated rate of recovery of hepatic homeostasis in the body was observed in laboratory animals in groups with the application of the ADPS TTS versus the control group.

5.
J Biomed Mater Res A ; 111(4): 543-555, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36478378

RESUMEN

One of the approaches to restoring the structure of damaged cartilage tissue is an intra-articular injection of tissue-engineered medical products (TEMPs) consisting of biocompatible matrices loaded with cells. The most interesting are the absorbable matrices from decellularized tissues, provided that the cellular material is completely removed from them with the maximum possible preservation of the structure and composition of the natural extracellular matrix. The present study investigated the mechanical, biochemical, and biological properties of decellularized porcine cartilage microparticles (DCMps) obtained by techniques, differing only in physical treatments, such as freeze-thaw cycling (Protocol 1), supercritical carbon dioxide fluid (Protocol 2) and ultrasound (Protocol 3). Full tissue decellularization was achieved, as confirmed by the histological analysis and DNA quantification, though all the resultant DCMps had reduced glycosaminoglycans (GAGs) and collagen. The elastic modulus of all DCMp samples was also significantly reduced. Most notably, DCMps prepared with Protocol 3 significantly outperformed other samples in viability and the chondroinduction of the human adipose-derived stem cells (hADSCs), with a higher GAG production per DNA content. A positive ECM staining for type II collagen was also detected only in cartilage-like structures based on ultrasound-treated DCMps. The biocompatibility of a xenogenic DCMps obtained with Protocol 3 has been confirmed for a 6-month implantation in the thigh muscle tissue of mature rats (n = 18). Overall, the results showed that the porcine cartilage microparticles decellularized by a combination of detergents, ultrasound and DNase could be a promising source of scaffolds for TEMPs for cartilage reconstruction.


Asunto(s)
Dióxido de Carbono , Cartílago , Porcinos , Humanos , Ratas , Animales , Temperatura , Ingeniería de Tejidos/métodos , Matriz Extracelular/química , ADN , Andamios del Tejido/química
6.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613557

RESUMEN

A significant lack of donor organs restricts the opportunity to obtain tissue-specific scaffolds for tissue-engineering technologies. One of the acceptable solutions is the development of decellularization protocols for a human donor pancreas unsuitable for transplantation. A protocol of obtaining a biocompatible tissue-specific scaffold from decellularized fragments with pronounced human pancreas lipomatosis signs with preserved basic fibrillary proteins of a pancreatic tissue extracellular matrix was developed. The scaffold supports the adhesion and proliferation of human adipose derived stem cell (hADSCs) and prolongs the viability and insulin-producing function of pancreatic islets. Experiments conducted allow for the reliance on the prospects of using the donor pancreas unsuitable for transplantation in the technologies of tissue engineering and regenerative medicine, including the development of a tissue equivalent of a pancreas.


Asunto(s)
Islotes Pancreáticos , Páncreas , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Matriz Extracelular/metabolismo , Hormonas Pancreáticas/metabolismo
7.
Life (Basel) ; 11(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34440500

RESUMEN

Mesenchymal stromal cells (MSCs) have shown a high potential for cartilage repair. Collagen-based scaffolds are used to deliver and retain cells at the site of cartilage damage. The aim of the work was a comparative analysis of the capacity of the MSCs from human adipose tissue to differentiate into chondrocytes in vitro and to stimulate the regeneration of articular cartilage in an experimental model of rabbit knee osteoarthrosis when cultured on microheterogenic collagen-based hydrogel (MCH) and the microparticles of decellularized porcine articular cartilage (DPC). The morphology of samples was evaluated using scanning electron microscopy and histological staining methods. On the surface of the DPC, the cells were distributed more uniformly than on the MCH surface. On day 28, the cells cultured on the DPC produced glycosaminoglycans more intensely compared to the MCH with the synthesis of collagen type II. However, in the experimental model of osteoarthrosis, the stimulation of the cartilage regeneration was more effective when the MSCs were administered to the MCH carrier. The present study demonstrates the way to regulate the action of the MSCs in the area of cartilage regeneration: the MCH is more conducive to stimulating cartilage repair by the MSCs, while the DPC is an inducer for a formation of a cartilage-like tissue by the MSCs in vitro.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA