Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bull Volcanol ; 82(11): 68, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088010

RESUMEN

Many explosive volcanic eruptions produce underexpanded starting gas-particle jets. The dynamics of the accompanying pyroclast ejection can be affected by several parameters, including magma texture, gas overpressure, erupted volume and geometry. With respect to the latter, volcanic craters and vents are often highly asymmetrical. Here, we experimentally evaluate the effect of vent asymmetry on gas expansion behaviour and gas jet dynamics directly above the vent. The vent geometries chosen for this study are based on field observations. The novel element of the vent geometry investigated herein is an inclined exit plane (5, 15, 30° slant angle) in combination with cylindrical and diverging inner geometries. In a vertical setup, these modifications yield both laterally variable spreading angles as well as a diversion of the jets, where inner geometry (cylindrical/diverging) controls the direction of the inclination. Both the spreading angle and the inclination of the jet are highly sensitive to reservoir (conduit) pressure and slant angle. Increasing starting reservoir pressure and slant angle yield (1) a maximum spreading angle (up to 62°) and (2) a maximum jet inclination for cylindrical vents (up to 13°). Our experiments thus constrain geometric contributions to the mechanisms controlling eruption jet dynamics with implications for the generation of asymmetrical distributions of proximal hazards around volcanic vents.

2.
J Acoust Soc Am ; 146(3): 1774, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31590526

RESUMEN

The determination of optimal geometric arrangements and electronic drives of loudspeaker arrays in sound reinforcement applications is an ill-posed inverse problem. This paper introduces an innovative method to determine complex driving functions, also considering complex environmental conditions. As an alternative to common frequency domain methods, the authors present an adjoint-based approach in the time domain: Acoustic sources are optimized in order to generate a given target sound field. Instead of the Helmholtz equation, the full non-linear Euler equations are considered. This enables an easier treatment of non-uniform flow and boundary conditions. As proof of concept, a circular and a linear monopole array are examined. For the latter, the environmental conditions include wind and thermal stratification. For all examples, the method is able to provide appropriate driving functions.

3.
Sci Rep ; 6: 35043, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27752047

RESUMEN

The natural wind environment that volant insects encounter is unsteady and highly complex, posing significant flight-control and stability challenges. It is critical to understand the strategies insects employ to safely navigate in natural environments. We combined experiments on free flying bumblebees with high-fidelity numerical simulations and lower-order modeling to identify the mechanics that mediate insect flight in unsteady winds. We trained bumblebees to fly upwind towards an artificial flower in a wind tunnel under steady wind and in a von Kármán street formed in the wake of a cylinder. Analysis revealed that at lower frequencies in both steady and unsteady winds the bees mediated lateral movement with body roll - typical casting motion. Numerical simulations of a bumblebee in similar conditions permitted the separation of the passive and active components of the flight trajectories. Consequently, we derived simple mathematical models that describe these two motion components. Comparison between the free-flying live and modeled bees revealed a novel mechanism that enables bees to passively ride out high-frequency perturbations while performing active maneuvers at lower frequencies. The capacity of maintaining stability by combining passive and active modes at different timescales provides a viable means for animals and machines to tackle the challenges posed by complex airflows.


Asunto(s)
Abejas/fisiología , Vuelo Animal , Movimientos del Aire , Animales , Fenómenos Biomecánicos , Modelos Teóricos , Orientación Espacial , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA