Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Syst Neurosci ; 16: 975989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741818

RESUMEN

A pipeline is proposed here to describe different features to study brain microcircuits on a histological scale using multi-scale analyses, including the uniform manifold approximation and projection (UMAP) dimensional reduction technique and modularity algorithm to identify neuronal ensembles, Runs tests to show significant ensembles activation, graph theory to show trajectories between ensembles, and recurrence analyses to describe how regular or chaotic ensembles dynamics are. The data set includes ex-vivo NMDA-activated striatal tissue in control conditions as well as experimental models of disease states: decorticated, dopamine depleted, and L-DOPA-induced dyskinetic rodent samples. The goal was to separate neuronal ensembles that have correlated activity patterns. The pipeline allows for the demonstration of differences between disease states in a brain slice. First, the ensembles were projected in distinctive locations in the UMAP space. Second, graphs revealed functional connectivity between neurons comprising neuronal ensembles. Third, the Runs test detected significant peaks of coactivity within neuronal ensembles. Fourth, significant peaks of coactivity were used to show activity transitions between ensembles, revealing recurrent temporal sequences between them. Fifth, recurrence analysis shows how deterministic, chaotic, or recurrent these circuits are. We found that all revealed circuits had recurrent activity except for the decorticated circuits, which tended to be divergent and chaotic. The Parkinsonian circuits exhibit fewer transitions, becoming rigid and deterministic, exhibiting a predominant temporal sequence that disrupts transitions found in the controls, thus resembling the clinical signs of rigidity and paucity of movements. Dyskinetic circuits display a higher recurrence rate between neuronal ensembles transitions, paralleling clinical findings: enhancement in involuntary movements. These findings confirm that looking at neuronal circuits at the histological scale, recording dozens of neurons simultaneously, can show clear differences between control and diseased striatal states: "fingerprints" of the disease states. Therefore, the present analysis is coherent with previous ones of striatal disease states, showing that data obtained from the tissue are robust. At the same time, it adds heuristic ways to interpret circuitry activity in different states.

2.
Neuroscience ; 446: 304-322, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32860933

RESUMEN

The mouse motor cortex exhibits spontaneous activity in the form of temporal sequences of neuronal ensembles in vitro without the need of tissue stimulation. These neuronal ensembles are defined as groups of neurons with a strong correlation between its firing patterns, generating what appears to be a predetermined neural conduction mode that needs study. Each ensemble is commonly accompanied by one or more parvalbumin expressing neurons (PV+) or fast spiking interneurons. Many of these interneurons have functional connections between them, helping to form a circuit configuration similar to a small-world network. However, rich club metrics show that most connected neurons are neurons not expressing parvalbumin, mainly pyramidal neurons (PV-) suggesting feed-forward propagation through pyramidal cells. Ensembles with PV+ neurons are connected to these hubs. When ligand-gated fast GABAergic transmission is blocked, temporal sequences of ensembles collapse into a unique synchronous and recurrent ensemble, showing the need of inhibition for coding cortical spontaneous activity. This new ensemble has a duration and electrophysiological characteristics of brief recurrent interictal epileptiform discharges (IEDs) composed by the coactivity of both PV- and PV+ neurons, demonstrating that GABA transmission impedes its occurrence. Synchronous ensembles are clearly divided into two clusters one of them lasting longer and mainly composed by PV+ neurons. Because an ictal-like event was not recorded after several minutes of IEDs recording, it is inferred that an external stimulus and/or fast GABA transmission are necessary for its appearance, making this preparation ideal to study both the neuronal machinery to encode cortical spontaneous activity and its transformation into brief non-ictal epileptiform discharges.


Asunto(s)
Corteza Motora , Potenciales de Acción , Animales , Interneuronas/metabolismo , Ratones , Corteza Motora/metabolismo , Neuronas/metabolismo , Parvalbúminas/metabolismo
3.
Neuroreport ; 30(6): 457-462, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30920433

RESUMEN

The ionic driving force for the chloride-permeable GABAA receptor is subject to spatial control and distribution of chloride transporters. NKCC1 and KCC2 are mostly expressed in neurons in a specific manner. In the striatum, the localization of these transporters in identified neurons is unknown. In this study, the expression of these transporters was found to be different between projection neurons and interneurons. NKCC1 immunoreactivity was observed in the soma of adult BAC-D1-eGFP+ and D2-eGFP+ striatal projection neurons (SPNs). KCC2 was not expressed in either projection neuron and immunoreactivity to this transporter was observed only in the neuropile. However, NKCC1 and KCC2 co-transporters were not localized in intracellular biocytin-injected dendrites of SPNs of the direct or indirect pathways (D1-SPNs and D2-SPNs). Experiments with PV Cre transgenic mice transfected with Cre-dependent adeno-associated viruses containing tdTomato in the striatum showed a cell-type-specific distribution of KCC2 chloride transporter co-expression associated with PV interneurons. Thus, depolarizing actions of GABA responses in adult projection neurons can be explained by the expression and somatic localization of the NKCC1 transporters. A somato/dendritic distribution of KCC2 expression was observed only in striatal interneurons and corresponds to the hyperpolarizing action of GABA recorded in these cells. This correlates the different roles for GABA actions in striatal neuronal excitability with the expression of specific chloride transporters.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Cotransportadores de K Cl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA