Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37504727

RESUMEN

Scytalidium ganodermophthorum (telomorph: Xylogone ganodermopthora) Kang, Sigler, Lee & Yun is a destructive fungal pathogen that produces a yellow pigment that is used in sustainable product development. Similar pigmenting ascomycetes cause soft rot in woody substrates, however, the decay capabilities of S. ganodermophthorum have not been assessed or related to pigment production. A wood block decay test showed highly variable production of the expected bright yellow pigment and a secondary darker pigment when tested against multiple wood species and nutrient conditions. Microscopic examination showed cell wall erosion typical of type-2 soft rot in wood, although enzymatic analysis did not show detectible levels of endocellulase. Chitinase was detected in plate cultures but not wood cultures, indicating adaption of the fungus to a variety of environmental growth conditions. The high variability of pigmentation in wood cultures suggests that growth of S. ganodermophthorum on liquid media and use of extracted pigment is a superior method for obtaining consistent yellow coloration.

2.
J Fungi (Basel) ; 8(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35330278

RESUMEN

Wood-staining fungal pigments have shown potential use as colorants for wood and textiles, with organic solvents as the pigment carrier. Natural oils have been suggested as an environmentally friendly and more available carrier; however, oils promoted color degradation. The current study examined the mechanism of said degradation and tested therapeutic and food-grade oils (instead of finishing oils) for their potential to carry draconin red, the pigment from Scytalidium cuboideum, without color loss over time. FTIR analysis from finishing oils indicated that oxidation was not likely the cause of color loss as the pigment could not be distinguished from the oils in the IR spectra. SEM was employed to determine if crystal degradation was contributing to color loss and indicated, surprisingly, that the crystals of draconin red formed rather than degraded over time. This suggested crystal breakdown was also not likely the cause of color loss. The pigment did not show degradation in hemp oil, flaxseed oil, and cold-pressed linseed oil when treated with ß-carotene. Further in-depth chemical studies are needed to determine the mechanism of color loss in pigmented natural oils; however, food-grade oils appear to be a promising alternative to carry draconin red, without degradation of the color.

3.
J Fungi (Basel) ; 7(2)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671668

RESUMEN

Spalting fungal pigments have shown potential in technologies ranging from green energy generation to natural colorants. However, their unknown toxicity has been a barrier to industrial adoption. In order to gain an understanding of the safety of the pigments, zebrafish embryos were exposed to multiple forms of liquid media and solvent-extracted pigments with concentrations of purified pigment ranging from 0 to 50 mM from Chlorociboria aeruginosa, Chlorociboria aeruginascens, and Scytalidium cuboideum. Purified xylindein from Chlorociboria sp. did not show toxicity at any tested concentration, while the red pigment dramada from S. cuboideum was only associated with significant toxicity above 23.2 uM. However, liquid cultures and pigment extracted into dichloromethane (DCM) showed toxicity, suggesting the co-production of bioactive secondary metabolites. Future research on purification and the bioavailability of the red dramada pigment will be important to identify appropriate use; however, purified forms of the blue-green pigment xylindein are likely safe for use across industries. This opens the door to the adoption of green technologies based on these pigments, with potential to replace synthetic colorants and less stable natural pigments.

4.
Chemistry ; 27(18): 5627-5631, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33543812

RESUMEN

Organic semiconductor materials have recently gained momentum due to their non-toxicity, low cost, and sustainability. Xylindein is a remarkably photostable pigment secreted by fungi that grow on decaying wood, and its relatively strong electronic performance is enabled by π-π stacking and hydrogen-bonding network that promote charge transport. Herein, femtosecond transient absorption spectroscopy with a near-IR probe was used to unveil a rapid excited-state intramolecular proton transfer reaction. Conformational motions potentially lead to a conical intersection that quenches fluorescence in the monomeric state. In concentrated solutions, nascent aggregates exhibit a faster excited state lifetime due to excimer formation, confirmed by the excimer→charge-transfer excited-state absorption band of the xylindein thin film, thus limiting its optoelectronic performance. Therefore, extending the xylindein sidechains with branched alkyl groups may hinder the excimer formation and improve optoelectronic properties of naturally derived materials.


Asunto(s)
Compuestos Policíclicos , Protones , Hongos , Enlace de Hidrógeno , Fenoles
5.
J Fungi (Basel) ; 6(2)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331434

RESUMEN

Identification of effective natural dyes with the potential for low environmental impact has been a recent focus of the textile industry. Pigments derived from spalting fungi have previously shown promise as textile dyes; however, their use has required numerous organic solvents with human health implications. This research explored the possibility of using linseed oil as a carrier for the pigment from Scytalidium cuboideum as a textile dye. Colored linseed oil effectively dyed a range of fabrics, with natural fibers showing better coloration. Scanning electron microscopy (SEM) revealed a pigment film over the fabric surface. While mechanical testing showed no strength loss in treated fabric, colorfastness tests showed significant changes in color in response to laundering and bleach exposure with variable effects across fabric varieties. SEM investigation confirmed differences in pigmented oil layer loss and showed variation in pigment crystal formation between fabric varieties. Heating of the pigmented oil layer was found to result in a bright, shiny fabric surface, which may have potential for naturally weatherproof garments.

6.
ACS Omega ; 4(8): 13309-13318, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31460459

RESUMEN

Organic semiconductors are of interest for (opto)electronic applications due to their low cost, solution processability, and tunable properties. Recently, natural product-derived organic pigments attracted attention due to their extraordinary environmental stability and unexpectedly good optoelectronic performance, in spite of only partially conjugated molecular structure. Fungi-derived pigments are a naturally sourced, sustainable class of materials that are largely unexplored as organic semiconductor materials. We present a study of the optical and electronic properties of a fungi-derived pigment xylindein, which is secreted by the wood-staining fungi Chlorociboria aeruginosa, and its blends with poly(methyl methacrylate) (PMMA) and crystalline nanocellulose (CNC). Optical absorption spectra of xylindein revealed the presence of two tautomers whose structures and properties were established using density functional theory. Pronounced pigment aggregation in polar solvents and in films, driven by intermolecular hydrogen bonding, was also observed. The pigment exhibited high photostability, electron mobility up to 0.4 cm2/(V s) in amorphous films, and thermally activated charge transport and photoresponse with activation energies of ∼0.3 and 0.2 eV, respectively. The dark and photocurrents in xylindein:PMMA blends were comparable to those in pristine xylindein film, whereas blends with CNC exhibited lower currents due to inhomogeneous distribution of xylindein in the CNC.

7.
Adv Biochem Eng Biotechnol ; 169: 109-124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30891625

RESUMEN

A small group of soft rotting wood decay fungi produce extracellular pigments as secondary metabolites in response to stress and as a means of resource capture. These fungi are collectively known as "spalting fungi" and have been used in wood art for centuries. The pigments produced by these fungi are finding increasing usage in industrial dye applications and green energy but remain problematic to grow in batch culture. Additionally problematic is that the pigments, especially the blue-green pigment known as xylindein, produced by Chlorociboria species, have yet to be fully synthesized. In order to further research development of these pigments and find success in areas such as textile and paint dyeing, wood UV protection, and organic photovoltaic cells, methods must be developed to mass produce the pigments. To date, three distinct methods have been developed, with varying degrees of success depending upon the fungal species (amended malt agar plates, shake liquid culture, and stationary liquid culture). This chapter details these three methods, their history, advantages and disadvantages, as well as their potential for industrial scale-up in the future. Graphical Abstract.


Asunto(s)
Hongos , Microbiología Industrial , Pigmentos Biológicos , Madera , Ascomicetos/metabolismo , Colorantes/metabolismo , Hongos/metabolismo , Microbiología Industrial/métodos , Pigmentos Biológicos/metabolismo , Madera/microbiología
8.
Molecules ; 23(10)2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30304844

RESUMEN

Pigments from wood-decay fungi (specifically spalting fungi) have a long history of use in wood art, and have become relevant in modern science due to their longevity and colorfastness. They are presently under investigation as colorants for wood, bamboo, oils, paints and textiles. Major hurdles to their commercialization have been color repeatability (in that the same strain of the same species of fungus may produce different colors over time), and the binding of the pigments to glass storage containers. This is persistent as they do not naturally exist in a loose form. Due to these issues, the 'standard' color for each was historically determined not by the amount of pigment, but by the color in a solution of dichloromethane (DCM), using the CIE L*a*b colorspace. This method of standardization severely limited the use of these pigments in industrial applications, as without a dry form, standard methodologies for repeatable color processing into other materials could not be easily implemented. Recent studies have developed a method to crystalize the red pigment from Scytalidium cuboideum (Sacc. & Ellis) Sigler & Kang, producing a highly pure (99%) solid crystal named 'Dramada'. Herein a method is detailed to compare the molarity of this crystallized pigment to variations in the color, to determine a color saturation curve (by weight) for the pigment from S. cuboideum in DCM and acetone. The molarities for this experiment ranged from 0.024 mM to 19 mM. Each molarity was color read and assigned a CIEL*a*b* value. The results showed that there was a correlation between the molarity and color difference, with the maximum red color occurring between 0.73 mM and 7.3 mM in DCM and between 0.97 mM to 0.73 mM in acetone. Extremely low molarities of pigment produced strong coloration in the solvent, and changes in molarity significantly affected the color of the solution. Having a saturation and color curve for the crystal 'Dramada' from S. cuboideum will allow for the reliable production of distinct colors from a known quantity (by weight) of pigment, erasing the final hurdle towards commercial development of the crystallized pigment from S. cuboideum as an industrial dyestuff.


Asunto(s)
Ascomicetos/química , Pigmentos Biológicos/química , Colorantes/química , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética
9.
Molecules ; 23(8)2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30065148

RESUMEN

Intarsia was an art form popular between the 15th⁻18th centuries that used wood pigmented by spalting fungi to create detailed landscapes, portraits, and other imagery. These fungi are still used today in art but are also finding relevance in material science as elements of solar cells, textile dyes, and paint colorants. Here we show that the spalting fungus Scytalidium cuboideum (Sacc. and Ellis) Sigler and Kang produces a red/pink pigment that forms two distinct colors of crystals (red and orange)-a very rare occurrence. In addition, a second structure of the crystal is proved through nuclear magnetic resonance (NMR). This is only the second instance of a stable, naphthoquinone crystal produced by a fungus. Its discovery is particularly valuable for solar cell development, as crystalline materials have a higher electrical conductivity. Other fungi in this order have shown strong potential as thin films for solar cells.


Asunto(s)
Ascomicetos/ultraestructura , Naftoquinonas/química , Pigmentos Biológicos/química , Ascomicetos/química , Ascomicetos/metabolismo , Fuentes de Energía Bioeléctrica , Color , Cristalización , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Naftoquinonas/metabolismo , Energía Solar
10.
Materials (Basel) ; 11(6)2018 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-29861469

RESUMEN

The use of both naturally occurring and synthetic pigmented wood has been prevalent in woodcraft for centuries. Modern manifestations generally involve either woodworkers' aniline dyes, or pigments derived from a special class of fungi known as spalting fungi. While fungal pigments are more renewable than anilines and pose less of an environmental risk, the carrier required for these pigments-dichloromethane (DCM)-is both problematic for humans and tends to only deposit the pigments on the surface of wood instead of evenly within the material. Internal coloration of wood is key to adoption of a pigmenting system by woodworkers. To address this issue, five solvents that had moderate solubility with the pigments extracted from Chlorociboria aeruginosa and Scytalidium cuboideum were identified, in the hopes that a reduction in solubility would result in a greater amount of the pigment deposited inside the wood. Of the tested solvents, acetonitrile was found to produce the highest internal color in ash, Douglas-fir, madrone, mountain hemlock, Port-Orford cedar, Pacific silver fir, red alder and sugar maple. While these carrier solvents are not ideal for extracting the pigments from the fungi, acetonitrile in particular does appear to allow for more pigment to be deposited within wood. The use of acetonitrile over DCM offers new opportunities for possible industrial spalting applications, in which larger pieces of wood could be uniformly pigmented and sold to the end user in larger quantities than are currently available with spalted wood.

11.
Neuroscience ; 300: 174-88, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25987201

RESUMEN

Naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) is a synthetic cannabinoid agonist illegally marketed in "Spice" and "herbal blend" for its psychoactive effect greater than those produced by cannabis. In rodents JWH-018 reproduces typical effects of (-)-Δ(9)-THC or Dronabinol® (Δ(9)-THC) such as hypothermia, analgesia, hypolocomotion and akinesia, while its effects on sensorimotor functions are still unknown. Therefore, the aim of the present study is to investigate the effect of acute administration of JWH-018 (0.01-6mg/kg i.p.) on sensorimotor functions in male CD-1 mice and to compare its effects with those caused by the administration of Δ(9)-THC (0.01-6mg/kg i.p.). A specific battery of behavioral tests were adopted to investigate effects of cannabinoid agonists on sensorimotor functions (visual, auditory, tactile) and neurological changes (convulsion, myoclonia, hyperreflexia) while video-tracking analysis was used to study spontaneous locomotion. JWH-018 administration inhibited sensorimotor responses at lower doses (0.01-0.1mg/kg), reduced spontaneous locomotion at intermediate/high doses (1-6mg/kg) and induced convulsions, myoclonia and hyperreflexia at high doses (6mg/kg). Similarly, administration of Δ(9)-THC reduced sensorimotor responses in mice but it did not inhibit spontaneous locomotion and it did not induce neurological alterations. All behavioral effects and neurological alterations were prevented by the administration of the selective CB1 receptor antagonist/inverse agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (AM 251). For the first time these data demonstrate that JWH-018 impairs sensorimotor responses in mice. This aspect should be carefully evaluated to better understand the potential danger that JWH-018 may pose to public health, with particular reference to decreased performance in driving and hazardous works.


Asunto(s)
Agonistas de Receptores de Cannabinoides/toxicidad , Drogas Ilícitas/toxicidad , Indoles/toxicidad , Naftalenos/toxicidad , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Córnea , Relación Dosis-Respuesta a Droga , Dronabinol/toxicidad , Pabellón Auricular , Audición/efectos de los fármacos , Masculino , Ratones , Movimiento/efectos de los fármacos , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Reflejo/efectos de los fármacos , Tacto/efectos de los fármacos , Vibrisas , Grabación en Video , Visión Ocular/efectos de los fármacos
12.
Neuropharmacology ; 95: 68-82, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25769232

RESUMEN

JWH-018 is a synthetic CB1 and CB2 agonist illegally marketed as products named "Spice" or "herbal blend" for its psychoactive effects which are much higher than those produced by cannabis. In the last year, the European Monitoring Centre for Drugs and Drug Addiction reported to the Italian National Early Warning System the seizure of plant material containing new halogenated derivatives of JWH-018 (JWH-018 Cl and JWH-018 Br). The present study aimed to investigate the in vitro and in vivo activity of these two new synthetic cannabinoids in mice. In vitro competition binding experiments performed on mouse and human CB1 receptors revealed a high affinity and potency of the halogenated compounds. Synthetic cannabinoids (0.01-6 mg/kg i.p.) impaired motor activity and induced catalepsy in mice and their effects were more severe with respect to those evoked by Δ(9)-THC. Moreover, they increased the mechanical and thermal pain threshold and induced a marked hypothermia. It is interesting to note that whereas high doses of JWH-018 cause seizures, myoclonia and hyperreflexia, the halogenated compounds, in particular JWH-018Br, were less effective. Behavioral and neurological changes were prevented by the selective CB1 receptor antagonist AM 251. These data demonstrate for the first time that JWH-018 Cl and JWH-018 Br act similarly to JWH-018 while inducing less convulsive episodes and myoclonias. These data support the hypothesis that the halogenated compounds may have been introduced onto market to produce similar intoxicating effects as JWH-018 while causing less side effects.


Asunto(s)
Agonistas de Receptores de Cannabinoides/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Indoles/metabolismo , Indoles/farmacología , Naftalenos/metabolismo , Naftalenos/farmacología , Animales , Unión Competitiva , Células CHO , Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/toxicidad , Cannabinoides/química , Cannabinoides/farmacología , Cannabinoides/toxicidad , Catalepsia/inducido químicamente , Cricetulus , Halogenación , Humanos , Hipotermia/inducido químicamente , Indoles/química , Indoles/toxicidad , Masculino , Ratones Endogámicos ICR , Actividad Motora/efectos de los fármacos , Naftalenos/química , Naftalenos/toxicidad , Umbral del Dolor/efectos de los fármacos , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Reflejo Anormal/efectos de los fármacos , Convulsiones/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA